python 可视化 热力图 heatmap

文章介绍了如何利用Python的数据分析库seaborn和matplotlib创建热力图来展示数据集中的相关系数矩阵。通过设置参数如vmin,vmax,cmap和annot,可以自定义热力图的显示效果,包括颜色范围、颜色映射和数值注释。示例代码展示了读取Excel数据并生成带有注释的蓝色调热力图的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

热力图 heatmap

热力图常用于展示一组变量的相关系数矩阵。

heatmap(data, vmin=None, vmax=None, cmap=None, center=None, annot=None, fmt='.2g',
     	annot_kws=None, linewidths=0, linecolor='white', cbar=True, cbar_kws = None,
     	square=False, xticklabels='auto', yticklabels='auto', mask=None, ax=None)

data:可视化数据集
vmin,vmax:用于指定图例中最小值与最大值的显示值
cmap:填充颜色( 常见的颜色‘Blues’,‘Greens’,‘Reds’等)
center:指定颜色中心值,通过该参数可以调整热力图的颜色深浅。
annot:指定一个bool类型的值或与data参数形状一样的数组,如果为True,就在热力图的每个单元上显示数值。
fmt:指定单元格中数据的显示格式。
square:bool类型参数,是否使热力图的每个单元格为正方形,默认为False。
mask:用于突出显示某些数据。
ax:用于指定子图的位置。

import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
plt.rcParams['font.sans-serif'] = ['SimHei']    #定义使其正常显示中文字体黑体
plt.rcParams['axes.unicode_minus'] = False      #用来正常显示表示负号
dcorr=pd.read_excel('data.xlsx',index_col='指标')
plt.subplots(figsize=(10,8))
sns.heatmap(dcorr,vmax=1, cmap="Blues",annot=True, square=True)

这里插入图片描述

在这里插入图片描述

如何选择图标类型

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值