stable diffusion webui之lora调用

本文介绍了如何通过Stable Diffusion WebUI有效地结合LoRa技术,利用特定的触发词和底模实现良好的效果。在调用时需使用<lora:>标签,如<lora:C4D_geometry_bg_v2.5:0.8>,并提供了正负提示示例以优化结果。同时,详细阐述了在WebUI中调用LoRa的链路过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.触发词+底模+lora效果最好(分数不一定要取到1,0.8也行);

2.引用时一定要使用<lora:>,例如<lora:C4D_geometry_bg_v2.5:0.8>;

"prompt": "(masterpiece:1.3), (best quality:1.3), (no human), artwork of 3D geometry, still life, clean, Pastel color, Comfortable natural light, minimalist style, modernist style, 3d rendering, 8K,<lora:C4D_geometry_bg_v2.5:0.8>",

"negative_prompt": "False , unreal , drawing , lines , low quality , lowresolution , blurry , unclear,nsfw"

### Stable Diffusion WebUI 使用教程及提示词 #### 文本到图像的基础操作 在初次打开Stable Diffusion WebUI界面时,用户会遇到`txt2img`标签页。此页面允许使用者输入文字描述来生成对应的图片[^3]。 ```python # Python伪代码展示如何通过API调用实现文本转图像的功能 response = requests.post( "http://127.0.0.1:7860/sdapi/v1/txt2img", json={ "prompt": "a professional photographer, photographing a scene", "steps": 50, "width": 512, "height": 512 } ) image_data = response.json()["images"][0] Image.open(io.BytesIO(base64.b64decode(image_data.split(",", 1)[1]))) ``` #### 提示词的作用与应用 为了更好地控制所创建的艺术作品样式,在编写提示(`prompt`)的时候可以加入特定关键词作为引导。这些词语能够影响最终产出的效果,比如人物表情、环境氛围等细节特征[^4]。 - **触发词**:某些特殊的短语可能被用来激活预训练模型内的特定模式或是风格变换机制。 例如,“赛博朋克夜景”这样的表达可以帮助系统理解并呈现具有未来感的城市夜晚景象;而像“洛可可装饰艺术”则能促使AI模仿该历史时期的室内设计特色来进行创作。 #### 参数调整建议 除了精心挑选合适的提示外,合理设置其他配置项同样重要。对于想要利用LoRA(Low-Rank Adaptation)技术微调输出样式的艺术家而言,应当关注官方文档中提及的最佳实践指南,并尝试匹配那些随同分享案例一同发布的参数组合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值