多模态中的视觉编码器clip以及输入分辨率

本文探讨了在多模态视觉编码中,使用如CLIP的ViT(Vision Transformer)而非传统分类backbone能显著提升效果。列举了不同模型如EVA2-CLIP-E、QWEN-VL、LLAVA等,它们支持的分辨率从224到896像素不等,展示分辨率变化对模型性能的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在多模态的视觉编码主干中,若采用分类的backbone效果很差,经过语义对齐的backbone,比如clip的vit,效果则好很多。

1.Cogvlm中的EVA2-CLIP-E,VIT中最后一层被移除,4.4B,支持分辨率为334/490.

2.QWEN-VL中openclip的ViT-bigG,1.9B,支持分辨率448x448。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值