Steinitz exchange lemma

目录

内容

翻译

证明

推论

Reference


内容

U和W是向量空间V的有限非零子集。如果U是一个线性独立的向量构成的子集,W可以张成V,那么:

1. |U|<=|W|;

2. 存在W的子集W',满足|W'|=|W|-|U|,使得U和W‘的并集可以张成V。

翻译

1. |U|表示集合U中元素的个数。上述第一点说明,由线性独立的向量构成的子集的元素的个数,是小于或等于张成集的元素个数的。

2. 说明线性无关的向量可以替换张成集中的向量,不改变张成的线性空间,而且这个替换是一一替换,即k个线性无关的向量可以同样替换张成集中的k个向量。这也就是交换引理名称的含义。

证明

利用数学归纳法证明:对任意的由有限个线性独立向量构成的集合U,其都可以和张成集W中的元素进行一一替换,得到新的张成集。这里对U的元素个数|U|进行归纳。

设W={w_1,...,w_n}

1. 当|U|=1时,u_1=a_1*w_1+...+a_n*w_n,由于u_1不为0,所以a_1,...,a_n中至少存在一个不为0的数,设为a_i,那么w_i=-(a_1*w_1+.U|..+a_i-1 * w_i-1 + a_i+1 * w_i+1 +...+ a_n*w_n)/a_i,可知使用u_1交换w_i,就可以得到新的U|张成集。因此当|U|=1时,命题成立。

2. 假设当|U|=k时,命题成立。即{u_1,...,u_k,w_k+1,...,w_n}为一个张成集。这里对张成集中的u元素和w元素进行了重新排序,不一定对应原始U和W中的元素顺序。

3. 那么|U|=k+1时,根据2可得,u_k+1=b_1*u_1+...+b_k*u_k+a_k+1*w_k+1+...+a_n*w_n,由于u_1,...,u_k+1线性独立,所以a_k+1,...,a_n至少存在一个不为0,设为w_j,同理,可以用u_k+1交换w_j,得到一个新的张成集。所以|U|=k+1时命题也成立。

所以由数学归纳法可得,对任意的|U|,只要其元素线性独立,其都可以等量替换张成集W中的元素。即存在W的子集W',满足|W'|=|W|-|U|,使得U和W‘的并集可以张成V。

由于|U|=|W|-|W'|,显然|U|<=|W|。

推论

1. 对于V的任意两组基B1、B2,由于基中的元素线性独立,同时也是张成集,所以有|B1|<=|B2| and |B2|<=|B1|,得|B1|=|B2|。即线性空间的不同基的维度相等。正因此,维度是线性空间的一个属性,定义为可张成该线性空间的线性独立向量集合的元素个数。

Reference

[1]. https://en.wikipedia.org/wiki/Steinitz_exchange_lemma

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值