差异表达基因-火山图和聚类图解释

本文介绍转录组数据分析中差异表达基因的筛选方法,包括倍数法和SAM法,并解释如何解读火山图和聚类图,帮助理解基因表达变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

想研究某现象的分子机制,老板豪气的来一句,先测个转录组吧,看下差异表达基因。

是否在心里窃喜,制个样就完事了,太easy有木有。等大堆数据回来的时候,是不是傻眼了?

从何下手挑选差异表达基因呢?
今天就先来聊聊如何看差异表达基因数据,火山图,聚类图又怎么看1差异基因筛选方法那差异基因是如何筛选出来的呢?差异基因的筛选方法有很多,包括倍数法、T检验、F检验及SAM等
下面简单介绍一下GCBI平台上用的倍数法和SAM法。
倍数法适用于没有生物学重复的样本,其计算基因在两个条件下表达水平的比值,确定比值的阈值,将绝对值大于此阈值的基因判断为差异基因。
SAM算法适用于有生物学重复的样本,通过对分母增加一个常量 T 检验过程减小了假阳性发生的概率。文献中报道,相较于其他算法,SAM算法更为稳定,筛选出的结果也更为准确。2差异基因数据解读经过合适的差异基因方法筛选出的差异基因,结果一般分为两部分,数据+图形。
数据结果展示如下图所示(两分组)众多参数中,重点看三个。

p-value或q-value

没有做生物学重复请跳过这一步。
p-value或q-value是统计学检验变量,代表差异显著性,一般p-value或q-value小于0.05代表具有显著性差异,但可根据具体情况适当调整
因为p-value或q-value衡量地是某个基因假阳性的概率,如果p-value或q-value越低,那么挑选该基因出现假阳性的概率就越低,可验证性就越高。

两者具体的计算方法具体如下:那p-value、q-value同时存在时看哪个呢?

SAM法只有q-value当两者同时存在时,可根据具体情况具体分析。
差异筛选是一个典型的多重假设检验过程,对于多重假设检验,单次检验中差异显著基因的假阳性率(p-value较小)可能会较大,而q-value和FDR值较常见的BH校正方法得到的FDR值而言,改进了其对假阳性估计的保守性。
即q-value相比于p-value更加严格,当差异基因结果较少时,可以退而求其次看p-value。Fold ChangeFold Change表示实验组比上对照组的差异表达倍数,一般表达相差2倍以上是有意义的,放宽要求1.5倍或者1.2倍也可以接受。
看表达倍数的同时还需结合基因表达丰度,信号值太低的基因会在后续的验证实验中检测不到。3差异基因图表解读在差异结果的图形展示结果中,主要是火山图聚类图。火山图火山图只针对两分组且有生物学重复的情况。
如何看火山图呢?

火山图可反映总体基因的表达情况,横坐标代表log2(Fold Change),纵坐标表示-log10(P值),每个点代表一个基因,颜色用以区分基因是否差异表达,图中橙色的点代表差异表达基因,蓝色的点代表没有差异表达的基因。聚类图

聚类图可以衡量样本或基因之间表达的相似性
如上图所示的聚类图中,横坐标代表样本聚类,一列代表一个样本,聚类基于样本间基因表达的相似性,样本间基因表达越接近,靠的越近,以此类推。
纵坐标代表基因聚类,一行代表一个基因,聚类基于基因在样本中表达的相似性,基因在样本中表达越接近,靠的越近,以此类推。
色阶代表基因表达丰度,越红代表上调得越明显,越绿代表下调得越明显。
如何做聚类图请戳往期推送

做个聚类图只需1分钟
差异基因有了,如何挑选潜在基因进行实验验证呢?
关键还在于感兴趣点在哪了。粗略的看,可以先看KEGG或者GO功能分类,看差异基因具体富集在哪些通路或功能。
比如关注的是细胞内脂肪酸合成关键酶,可以重点看脂肪酸合成和碳流相关通路。具体如何看KEGG或者GO功能分类,请听下回分解。


参考

https://www.cnblogs.com/leezx/p/6601967.html


DrugAI
<think>好的,用户的问题是关于如何绘制或理解差异基因火山,特别是在生物信息学中使用Python或R语言进行数据可视化。我需要结合提供的引用资料,整理出清晰的步骤方法。 首先,火山的基本概念是什么?根据引用[2][4],火山主要用于展示差异分析结果,横轴通常是差异倍数(FoldChange)的对数值,纵轴是P值的负对数。这样可以将基因按照显著性变化程度分类。需要明确横纵轴的含义,以及如何确定阈值线。 接下来,绘制火山的步骤。引用[1][4]提到了Python中使用seaborn的scatterplot,而引用[2]提到了热的绘制,可能相关。需要整理数据准备、计算log2(FoldChange)-log10(p值),然后绘制散点,并添加阈值线。同时,引用[3]提到在线工具ImageGP,可以补充说明。 Python实现部分,代码示例需要展示数据处理,比如使用pandas读取数据,matplotlibseaborn绘。注意标注显著点,可能用不同颜色区分。引用[1]中的代码片段可以作为参考,但需要调整成火山的代码。 R语言部分,引用中并没有直接提到,但常见的方法是使用ggplot2。需要补充R的代码示例,比如如何用ggplot2做散点,添加阈值线,设置颜色。可能还需要提到Bioconductor中的EnhancedVolcano包,这虽然引用中没有,但属于常见做法,可以加入。 注意事项部分,引用[2]提到热的聚类,但火山不需要,所以重点在阈值设置可视化优化。引用[3]提到参数调整,可以强调调整点的大小、透明度等。 最后,相关问题需要围绕火山的扩展,比如如何选择阈值、其他工具、解读结果、美化表以及热火山的结合使用。确保问题覆盖用户可能感兴趣的后续步骤。 需要检查所有引用是否正确应用,比如引用[4]提到ax = sns.scatterplot,这在Python示例中要用到。同时确保LaTeX格式正确,如log$_2$(FoldChange)-log$_{10}$(p值)的表示,使用$包裹。 现在组织回答结构,分步骤讲解,确保每个部分都有引用支持,并在末尾添加相关问题。需要避免使用Markdown,保持自然的中文表达,同时遵循系统级指令的格式要求。</think>### 如何绘制差异基因火山? 差异基因火山生物信息学中用于展示差异表达基因的常用可视化工具,横轴为差异倍数(FoldChange)的对数值,纵轴为统计显著性(p值)的负对数[^1][^4]。以下是具体步骤及代码实现: --- #### **一、数据准备** 1. **输入数据** 需要包含三列:基因名称、差异倍数(FoldChange)、p值(或校正后的p值如FDR)。 2. **数据预处理** - 计算log$_2$(FoldChange) - 计算-log$_{10}$(p值) ```python import pandas as pd data = pd.read_csv("差异基因数据.csv") data["log2FC"] = data["FoldChange"].apply(lambda x: np.log2(x)) data["neg_log10_p"] = -np.log10(data["pvalue"]) ``` --- #### **二、绘制火山(Python)** 使用`matplotlib``seaborn`绘制散点,并标注显著性阈值线[^4]: ```python import matplotlib.pyplot as plt import seaborn as sns plt.figure(figsize=(10,6)) # 绘制所有基因 ax = sns.scatterplot( x="log2FC", y="neg_log10_p", data=data, hue=data.apply(lambda x: "显著上调" if x.log2FC > 1 and x.neg_log10_p > 1.3 else "显著下调" if x.log2FC < -1 and x.neg_log10_p > 1.3 else "不显著", axis=1), palette={"不显著":"gray", "显著上调":"red", "显著下调":"blue"}, alpha=0.6 ) # 添加阈值线 plt.axvline(x=1, color="black", linestyle="--") plt.axvline(x=-1, color="black", linestyle="--") plt.axhline(y=1.3, color="black", linestyle="--") # 假设p<0.05 plt.xlabel("log$_2$(FoldChange)") plt.ylabel("-log$_{10}$(p值)") plt.title("差异基因火山") plt.show() ``` --- #### **三、绘制火山(R语言)** 在R中使用`ggplot2`: ```r library(ggplot2) data <- read.csv("差异基因数据.csv") data$log2FC <- log2(data$FoldChange) data$neg_log10_p <- -log10(data$pvalue) ggplot(data, aes(x=log2FC, y=neg_log10_p, color=ifelse(abs(log2FC) > 1 & neg_log10_p > 1.3, ifelse(log2FC > 1, "up", "down"), "ns"))) + geom_point(alpha=0.6) + scale_color_manual(values=c("up"="red", "down"="blue", "ns"="gray")) + geom_vline(xintercept=c(-1,1), linetype="dashed") + geom_hline(yintercept=1.3, linetype="dashed") + labs(x="log2(FoldChange)", y="-log10(p值)", color="") + theme_classic() ``` --- #### **四、注意事项** 1. **阈值选择** - FoldChange阈值通常设为2倍(即|log$_2$FC| >1) - p值阈值常用0.05或校正后的FDR(对应-log$_{10}$(0.05)=1.3) 2. **优化可视化** - 调整点的大小(`s`参数)、透明度(`alpha`) - 使用`EnhancedVolcano`(R包)或`plotly`(Python)增强交互性[^3] --- #### **五、在线工具推荐** - **ImageGP**:支持火山在线生成,只需上传数据矩阵,设置参数即可输出发表级片[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值