当前教程成品小程序已上线,微信搜一搜,搜索小程序: 文案提取F
1.使用 AI 生成产品方案
使用 cursor 开发一个小程序,首先需要使用 ai 按照你的需求完成产品设计,我使用的是 chatGpt,模型选用的是 4o,输入指令如下
作为一名资深产品经理,设计一款文案提取的小程序
然后 gpt 给出了如下回复,gpt 在回复的时候,会给我们一些选择,比如数据库使用的 mysql/Oracle 等,我们需要把选择做好,如上面直接保留 mysql;把文案中的所有的不确定设置成确定,修改后的文案如下
文案提取小程序产品设计方案
产品背景
随着短视频平台(如抖音、快手、B站)内容的爆炸式增长,许多用户希望能快速提取视频中的字幕或文案,以便进行二次创作、>学习、翻译或分享。然而,目前的工具大多较为复杂,不适合普通用户使用。因此,设计一款 简单、快捷、高效 >的文案提取小程序,满足用户需求。
一、产品定位
目标用户:
短视频创作者:提取热门视频文案进行二次创作。
自媒体人:获取视频文案进行改编、整理内容。
学习者:提取外语视频字幕进行学习。
普通用户:摘录感兴趣的视频文案,收藏或分享。
核心价值:
一键提取短视频的文案,降低用户操作成本。
支持多种视频平台(抖音)。
提供多种文案优化功能(格式优化、翻译、去重)。
轻量级小程序,方便随时随地使用。
二、产品功能设计
1. 核心功能
(1) 文案提取
- 输入方式:
- 分享链接提取:用户复制短视频链接,粘贴至小程序,一键提取文案。
- 本地上传视频提取(高级功能):用户上传本地视频,自动识别字幕。
- 技术支持:
- 使用 Python FastAPI 后端 + FFmpeg 进行音视频处理。
- AI 语音识别 使用 Whisper-tiny 模型将视频语音转文字。
- 使用百度智能体,将提取结果进行校准
(2) 文案处理
- 格式优化:
- 去时间戳:去除带时间轴的字幕格式。
- 自动断句:按语义分句,提升可读性。
- 文本去重:去除重复句子,提升文案流畅度。
- 翻译支持:
- 支持中英互译,拓展用户场景。
- 文本导出:
- 复制粘贴、导出 Word / TXT / PDF。
- 一键分享到微信、微博、剪映等平台。
2. 增值功能(高级会员)
- 批量提取:一次性输入多个视频链接,批量生成文案。
- 智能改写:AI 自动优化文案风格,适合不同应用场景。
- 云存储:历史提取记录云端保存,随时查阅。
- 多语言识别:支持日韩、法语、西班牙语等多语种提取。
三、产品结构
用户端(小程序)
- 主页:输入视频链接或上传文件,进行文案提取
- 结果页:展示提取内容,并提供优化、导出、分享功能
- 会员中心:管理会员权益、订阅套餐
- 历史记录:查看过往提取的文案
- 设置:支持换肤、个性化选项
后端(FastAPI)
- 视频解析:解析短视频平台链接,获取视频信息
- 文案提取:调用 OCR / 语音识别 API,提取文本
- 文案优化:格式处理、翻译、去重
- 会员管理:订阅体系,权限控制
- 数据存储:MySQL 存储用户历史数据
四、商业模式
免费版:
基础文案提取(限量使用)
基础格式优化
广告变现(插入 Banner / 视频广告)
会员付费:
月度订阅:¥9.9/月
年度会员:¥88/年
终身买断:¥199/次
增值服务:
定制化 API:为企业 / 自媒体开放 API 调用接口,按调用量计费
高精度 OCR & AI 识别:调用高端 OCR 方案,单次收费
五、技术栈
- 前端:微信小程序(Taro + Vant Weapp)
- 后端:Python FastAPI + MySQL
- 视频处理:FFmpeg / Whisper
- 缓存:Redis
- 云存储:阿里 OSS
六、产品发展规划
1. MVP 版本(1.0)
- 核心功能上线(文案提取 + OCR 识别 + 基础优化)
- 微信小程序审核 & 上线
- 运营推广(社群裂变、KOL 推广)
2. 迭代版本(2.0)
- 会员体系搭建,支持增值功能
- 支持多平台(抖音、快手、B站)
- 接入 AI 改写和翻译
3. 企业版(3.0)
- 开放 API,支持企业批量调用
- 私有化部署,适用于 SaaS 模式
七、运营推广方案
1. 目标人群
- 自媒体人、短视频创作者
- 学习者、外语爱好者
- 影视剪辑师、字幕组
2. 推广策略
- 社群裂变:创建学习交流群,引导用户分享小程序
- KOL 合作:邀请短视频博主测评推荐
- SEO & 内容营销:撰写短视频提取相关博客,提高搜索引擎排名
- 产品矩阵:结合 PC 端 & 移动端,打通多个场景
- 投流广告:精准投放自媒体和剪辑用户群体
总结
这款文案提取小程序,主打 快捷、精准、智能,通过基础免费 + 会员增值的商业模式,实现用户增长和变现。借助 >FastAPI、高级 OCR 和 AI 语音识别,能够有效提高提取效率,并满足不同用户需求。
🚀 下一步计划:
- 技术验证:搭建 FastAPI + OCR 方案的 Demo
- 小程序 UI 设计:完成 MVP 版界面
- 早期用户测试:收集反馈,优化功能
修改完的产品方案既为我们要是使用的最终的产品方案
2.使用 AI 根据产品方案生成技术方案
2.1 前端页面设计
在 chatGpt 的原对话中继续拉扯,输入
作为一名资深全栈工程师,请根据上面产品方案完成前后端设计,小程序分成多少个页面实现,每个页面的元素,以及支撑对 api 接口,后端每个 api 接口对应的业务逻辑,后端对象,数据库的设计
同样 chatGpt 会立刻给出响应,我们需要评估他给出的设计,改掉不符合自己预期的部分,如果没有预期,就不用修改了,直接进行到下一步,输入如上指令之后,GPT 给出的反馈如下,实际反馈的内容比较多,去掉无关部分,保留前端页面,改成自己想要的样子之后,如下
文案提取小程序前后端设计
基于上面的产品方案,以下是详细的前后端设计,包括小程序页面结构、前端元素、后端 API &g