PCoA和PCA

PCA (principle component analysis)主成分分析:常用的降维算法,该方法是在样本*特征矩阵上直接进行特征转换,前提假设是数据点变化大的维度信息量更大,设法保留数据里的变异让点的位置尽量不要变动。
PCoA(principle coordination analysis)主坐标分析:是探索数据相似度或者相异度可视化方法。该方法是在样本距离矩阵上进行变换,尽量在低维空间保持样本在高维空间的距离关系

下面是pcoa方法的原理,转载于博客:http://blog.sina.com.cn/s/blog_670445240101nlss.html

PCoA, 这是一种排序方法。假设我们对N个样方有了衡量它们之间差异即距离的数据,就可以用此方法找出一个直角坐标系(最多N-1维),使N个样方表示成N个点,而使点间的欧氏距离的平方正好等于原来的差异数据。

主坐标分析是Gower(1966)建立的。因为样方间差异数据可用各种各样的办法给出, 这种方法用得很普遍。例如原来只知样本属甲型、乙型、丙型……等名称的区别,只要对不同型间的差异给以适当的数量描述,就可以用此方法求出各样方的数量坐标,从而实现定性数据的定量转换。

主坐标方法简单、明确、效率很高。它与主分量分析一样,最后找出的坐标系不仅正交, 而且第一轴、第二轴……依次按N个点在该轴上的方差大小顺序排列,N个点对不同两个轴都不相关。所以也可用较少的维数,特别是直观的二、三维空间去排列样方,而使信息的损失最少。它与主分量分析不同之处在于:不是先给出N个点的坐标,去找出刚性旋转的坐标;而是只知其间的距离要去重新建立各点的坐标。因此可以不限于度量(metrtic)的相似系数公式,Pernitec(1977)采用数量数据对于寒温带森林和草地进行主坐标分析,他认为非度量(non-mertic)相似系数比度量相似系数效果更佳。

 

主坐标分析的步骤如下:

1)构成样本间差异的数据矩阵M

  【T】排序--5--PCoA主坐标分析(1) <wbr>(principal <wbr>coordinate <wbr>analysis)

M的数据一般不是生态工作者观察群落的原始记录,而是由原始记录推导出来的,它 有各种推导方法。

2)构成离差矩阵A

 

【T】排序--5--PCoA主坐标分析(1) <wbr>(principal <wbr>coordinate <wbr>analysis)

就求出A矩阵的元素。以后可知,它是最后求出的N个样方点坐标矩阵的离差矩阵。这里不必证明而列出A具有的三个性质:1,A是对称的,即aij~aji(i,j=1,2,……,N)2,A的行和及列和均等于0,即Ai.=A.i=0; 3, mij2=mji2=aii+ajj-2aij( i,j=1,2,……,N).

 

3)求出N个样方点的坐标矩阵C

因为A是NxN的对称实矩阵,所以必存在着酉矩阵(正交矩阵)U将A变换成对角矩B,即 UAU’=B,或A=U’BU。其中B的主对角线元素为λ1, λ2,……λN,分别 是A的N个依大小排 列的特征根,而U的每一行向量是相应的特征向量。

【T】排序--5--PCoA主坐标分析(1) <wbr>(principal <wbr>coordinate <wbr>analysis)

 

 4 ) 排列N个样方

根据C给出的N个样方的坐标值,可以在s维空间中排列样方,而不损失信息。 与主分量分析一 样 , 可以在较低K(< s)维空间中排列样方, 则保留的信息百分比为 :【T】排序--5--PCoA主坐标分析(1) <wbr>(principal <wbr>coordinate <wbr>analysis)

 。特别是只选择二、三维主坐标就可直观地画出它们的排序图形

【T】排序--5--PCoA主坐标分析(1) <wbr>(principal <wbr>coordinate <wbr>analysis)

 



xia
在这里插入图片描述

  • 0
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: PCA(Principal Component Analysis)/PCoA(Principal Coordinates Analysis)图是一种数据可视化工具,用于显示多个样本之间的相似性和差异性。这些图通过对高维数据进行降维,将其映射到二维或三维空间中,从而可视化样本间的差异性。PCA/PCoA图可以应用于多种领域,例如生物学、化学和物理学等,用于分析和解释不同样本之间的相似性和差异性。 ### 回答2: PCA(Principal Component Analysis)和PCoA(Principal Coordinate Analysis)图都是用来可视化多变量数据集中的样本间相似性或差异性的方法。 PCA图是通过将多维数据降维到少数几个主成分来展示数据的结构和样本之间的关系。在PCA中,数据通过线性变换从原始空间投影到新的坐标空间中。新坐标空间的各个维度(主成分)是原始数据中方差最大的方向,对应着数据中最重要的信息。因此,PCA图能够帮助我们发现数据集中的主要模式和趋势,以及样本在这些主要特征上的相似性和差异性。 PCoA图与PCA图类似,也是通过降维来展示多变量数据集中的样本关系。不同之处在于,PCoA图是基于距离矩阵进行计算的,而不是直接使用原始数据。PCoA将样本之间的距离信息保留在降维后的坐标中,使我们能够更好地理解样本之间的相似性和差异性。 无论是PCA图还是PCoA图,它们都能帮助我们发现样本之间的模式和结构,从而帮助我们更好地理解和解释数据。这些图形方法可以应用于各种领域,如生物学、化学、地理学等,在分类、聚类、相似性分析等研究中发挥着重要作用。 ### 回答3: PCA(主成分分析)和PCoA(主坐标分析)图是用于对多元数据进行降维、可视化和聚类分析的重要工具。 PCA是一种数学统计方法,通过线性变换将多维数据降低为较低维度的数据,以便更容易理解和解释。PCA图揭示了多变量数据中的主要成分,并提供了这些成分之间的关系。在PCA图中,每个数据点代表一个样本,它们根据其在主成分上的投影位置被定位。距离主成分越远的点表示为在数据集中具有更大的变化和重要性。 PCoA是一种对相异性矩阵进行多维缩放的方法,用于计算样本间的相对距离。PCoA图将样本点在二维或三维空间中进行可视化,以显示样本间的相对相似性和差异性。在PCoA图中,样本点之间的距离越远,表示它们之间的相似性越低。相反,距离越近的样本表示它们之间的相似性越高。 综上所述,PCAPCoA图提供了一种直观的方法来理解和解释多元数据。它们可以用于发现样本之间的分组趋势,揭示数据中的潜在模式,并帮助进一步分析和解释复杂数据集。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值