PCA和PCOA

其实不论是PCoA还是PCA图均是用散点图来展示结果PCoA和PCA的结果,PCoA和PCA准确来讲是数据降维分析方法。
顺便值此佳节,祝福各位和“科研”都能够拥有幸福时光和美好结局。

什么是PCA和PCoA

主成分分析(Principal components analysis,PCA)是一种统计分析、简化数据集的方法。它利用正交变换来对一系列可能相关的变量的观测值进行线性变换,从而投影为一系列线性不相关变量的值,这些不相关变量称为主成分(Principal Components)。具体地,主成分可以看做一个线性方程,其包含一系列线性系数来指示投影方向(如图)。PCA对原始数据的正则化或预处理敏感(相对缩放)。PCA是最简单的以特征量分析多元统计分布的方法。通常情况下,这种运算可以被看作是揭露数据的内部结构,从而更好的解释数据的变量的方法。

 

PCA示意图

主坐标分析(Principal Coordinates Analysis,PCoA),即经典多维标度(Classical multidimensional scaling),用于研究数据间的相似性。PCoA与PCA都是降低数据维度的方法,但是差异在在于PCA是基于原始矩阵,而PCoA是基于通过原始矩阵计算出的距离矩阵。因此,PCA是尽力保留数据中的变异让点的位置不改动,而PCoA是尽力保证原本的距离关系不发生改变,也就是使得原始数据间点的距离与投影中即结果中各点之间的距离尽可能相关(如图)。

 

PCoA示意图

如何进行PCA和PCoA分析

R中有很多包都提供了PCA和PCoA,比如常用的ade4包。本文将基于该包进行PCA和PCoA的分析,数据是自带的deug,该数据提供了104个学生9门课程的成绩(见截图)和综合评定。综合评定有以下几个等级:A+,A,B,B-,C-,D。
让我们通过PCA和PCoA来看一看这样的综合评定是否合理,是否确实依据这9门课把这104个学生合理分配到不同组(每个等级一个组)。

 

deug的9门课

(1)PCA分析及作图
前文已经介绍了PCA是基于原始数据,所以直接进行PCA分析即可。由于前面已经介绍过散点图的绘制方法,这里不再细讲,PCA分析完毕后我们直接作图展示结果。

 

library(ade4)
library(ggplot2)
library(RColorBrewer)
data(deug)

#PCA分析
pca<- dudi.pca(deug$tab, scal = FALSE, center = deug$cent, scan = FALSE)

#坐标轴解释量(前两轴)
pca_eig <- (pca$eig)[1:2] / sum(pca$eig)

#提取样本点坐标(前两轴)
sample_site <- data.frame({pca$li})[1:2]
sample_site$names <- rownames(sample_site)
names(sample_site)[1:2] <- c('PCA1', 'PCA2')

#以最终成绩作为分组
sample_site$level<-factor(deug$result,levels=c('A+','A','B','B-','C-','D'))

library(ggplot2)

pca_plot <- ggplot(sample_site, aes(PCA1, PCA2,color=level)) +
  theme_classic()+#去掉背景框
  geom_vline(xintercept = 0, color = 'gray', size = 0.4) + 
  geom_hline(yintercept = 0, color = 'gray', size = 0.4) +
  geom_point(size = 1.5)+  #可在这里修改点的透明度、大小
  scale_color_manual(values = brewer.pal(6,"Set2")) + #可在这里修改点的颜色
  theme(panel.grid = element_line(color = 'gray', linetype = 2, size = 0.1), 
        panel.background = element_rect(color = 'black', fill = 'transparent'), 
        legend.title=element_blank()
  )+
  labs(x = paste('PCA1: ', round(100 * pca_eig[1], 2), '%'), y = paste('PCA2: ', round(100 * pca_eig[2], 2), '%')) 

pca_plot

整体看起来还不错,就是B-和C-的学生似乎难以区分。

(2)PCoA分析及作图

 

library(ade4)
library(ggplot2)
library(RColorBrewer)
library(vegan)#用于计算距离
data(deug)
tab<-deug$tab
tab.dist<-vegdist(tab,method='euclidean')#基于euclidean距离
pcoa<- dudi.pco(tab.dist, scan = FALSE,nf=3)

#坐标轴解释量(前两轴)
pcoa_eig <- (pcoa$eig)[1:2] / sum(pcoa$eig)

#提取样本点坐标(前两轴)
sample_site <- data.frame({pcoa$li})[1:2]
sample_site$names <- rownames(sample_site)
names(sample_site)[1:2] <- c('PCoA1', 'PCoA2')

#以最终成绩作为分组
sample_site$level<-factor(deug$result,levels=c('A+','A','B','B-','C-','D'))

library(ggplot2)

pcoa_plot <- ggplot(sample_site, aes(PCoA1, PCoA2,color=level)) +
  theme_classic()+#去掉背景框
  geom_vline(xintercept = 0, color = 'gray', size = 0.4) + 
  geom_hline(yintercept = 0, color = 'gray', size = 0.4) +
  geom_point(size = 1.5)+  #可在这里修改点的透明度、大小
  scale_color_manual(values = brewer.pal(6,"Set2")) + #可在这里修改点的颜色
  theme(panel.grid = element_line(color = 'gray', linetype = 2, size = 0.1), 
        panel.background = element_rect(color = 'black', fill = 'transparent'), 
        legend.title=element_blank()
  )+
  labs(x = paste('PCoA1: ', round(100 * pcoa_eig[1], 2), '%'), y = paste('PCoA2: ', round(100 * pcoa_eig[2], 2), '%')) 

pcoa_plot

有时候PCA和PCoA的结果差不多,有时候某种方法能够把样本有效分开而另一种可能效果不佳,这些都要看样本数据的特性。
因为没有现成可供分享的微生物组数据,所以用了这个成绩的数据集。通常来说在微生物组的研究中,我们会根据物种丰度的文件对数据进行PCA或者PCoA分析,也是我们所说的beta-diveristy分析,根据PCA或者PCoA的结果看疾病组和对照组能否分开,以了解微生物组的总体变化情况。

 

  • 2
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: PCA(Principal Component Analysis)/PCoA(Principal Coordinates Analysis)图是一种数据可视化工具,用于显示多个样本之间的相似性和差异性。这些图通过对高维数据进行降维,将其映射到二维或三维空间中,从而可视化样本间的差异性。PCA/PCoA图可以应用于多种领域,例如生物学、化学和物理学等,用于分析和解释不同样本之间的相似性和差异性。 ### 回答2: PCA(Principal Component Analysis)和PCoA(Principal Coordinate Analysis)图都是用来可视化多变量数据集中的样本间相似性或差异性的方法。 PCA图是通过将多维数据降维到少数几个主成分来展示数据的结构和样本之间的关系。在PCA中,数据通过线性变换从原始空间投影到新的坐标空间中。新坐标空间的各个维度(主成分)是原始数据中方差最大的方向,对应着数据中最重要的信息。因此,PCA图能够帮助我们发现数据集中的主要模式和趋势,以及样本在这些主要特征上的相似性和差异性。 PCoA图与PCA图类似,也是通过降维来展示多变量数据集中的样本关系。不同之处在于,PCoA图是基于距离矩阵进行计算的,而不是直接使用原始数据。PCoA将样本之间的距离信息保留在降维后的坐标中,使我们能够更好地理解样本之间的相似性和差异性。 无论是PCA图还是PCoA图,它们都能帮助我们发现样本之间的模式和结构,从而帮助我们更好地理解和解释数据。这些图形方法可以应用于各种领域,如生物学、化学、地理学等,在分类、聚类、相似性分析等研究中发挥着重要作用。 ### 回答3: PCA(主成分分析)和PCoA(主坐标分析)图是用于对多元数据进行降维、可视化和聚类分析的重要工具。 PCA是一种数学统计方法,通过线性变换将多维数据降低为较低维度的数据,以便更容易理解和解释。PCA图揭示了多变量数据中的主要成分,并提供了这些成分之间的关系。在PCA图中,每个数据点代表一个样本,它们根据其在主成分上的投影位置被定位。距离主成分越远的点表示为在数据集中具有更大的变化和重要性。 PCoA是一种对相异性矩阵进行多维缩放的方法,用于计算样本间的相对距离。PCoA图将样本点在二维或三维空间中进行可视化,以显示样本间的相对相似性和差异性。在PCoA图中,样本点之间的距离越远,表示它们之间的相似性越低。相反,距离越近的样本表示它们之间的相似性越高。 综上所述,PCAPCoA图提供了一种直观的方法来理解和解释多元数据。它们可以用于发现样本之间的分组趋势,揭示数据中的潜在模式,并帮助进一步分析和解释复杂数据集。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天道工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值