PCA和PCOA

PCA(主成分分析)和PCoA(主坐标分析)是数据降维的方法,前者基于原始数据,后者基于距离矩阵。在R中,使用ade4包可以进行这两种分析。PCA试图保留数据变异,而PCoA尽量保持原始距离关系。通过示例数据集deug(学生课程成绩)进行PCA和PCoA分析,结果显示两种方法在区分学生等级方面存在差异,PCA中B-和C-学生区分不明显,但PCoA可能更优。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

其实不论是PCoA还是PCA图均是用散点图来展示结果PCoA和PCA的结果,PCoA和PCA准确来讲是数据降维分析方法。
顺便值此佳节,祝福各位和“科研”都能够拥有幸福时光和美好结局。

什么是PCA和PCoA

主成分分析(Principal components analysis,PCA)是一种统计分析、简化数据集的方法。它利用正交变换来对一系列可能相关的变量的观测值进行线性变换,从而投影为一系列线性不相关变量的值,这些不相关变量称为主成分(Principal Components)。具体地,主成分可以看做一个线性方程,其包含一系列线性系数来指示投影方向(如图)。PCA对原始数据的正则化或预处理敏感(相对缩放)。PCA是最简单的以特征量分析多元统计分布的方法。通常情况下,这种运算可以被看作是揭露数据的内部结构,从而更好的解释数据的变量的方法。

 

PCA示意图

主坐标分析(Principal Coordinates Analysis,PCoA),即经典多维标度(Classical multidimensional scaling),用于研究数据间的相似性。PCoA与PCA都是降低数据维度的方法,但是差异在在于PCA是基于原始矩阵,而PCoA是基于通过原始矩阵计算出的距离矩阵。因此,PCA是尽力保留数据中的变异让点的位置不改动,而PCoA是尽力保证原本的距离关系不发生改变,也就是使得原始数据间点的距离与投影中即结果中各点之间的距离尽可能相关(如图)。

 

PCoA示意图

如何进行PCA和PCoA分析

R中有很多包都提供了PCA和PCoA,比如常用的ade4包。本文将基于该包进行PCA和PCoA的分析,数据是自带的deug,该数据提供了104个学生9门课程的成绩(见截图)和综合评定。综合评定有以下几个等级:A+,A,B,B-,C-,D。
让我们通过PCA和PCoA来看一看这样的综合评定是否合理,是否确实依据这9门课把这104个学生合理分配到不同组(每个等级一个组)。

 

deug的9门课

(1)PCA分析及作图
前文已经介绍了PCA是基于原始数据,所以直接进行PCA分析即可。由于前面已经介绍过散点图的绘制方法,这里不再细讲,PCA分析完毕后我们直接作图展示结果。

 

library(ade4)
library(ggplot2)
library(RColorBrewer)
data(deug)

#PCA分析
pca<- dudi.pca(deug$tab, scal = FALSE, center = deug$cent, scan = FALSE)

#坐标轴解释量(前两轴)
pca_eig <- (pca$eig)[1:2] / sum(pca$eig)

#提取样本点坐标(前两轴)
sample_site <- data.frame({pca$li})[1:2]
sample_site$names <- rownames(sample_site)
names(sample_site)[1:2] <- c('PCA1', 'PCA2')

#以最终成绩作为分组
sample_site$level<-factor(deug$result,levels=c('A+','A','B','B-','C-','D'))

library(ggplot2)

pca_plot <- ggplot(sample_site, aes(PCA1, PCA2,color=level)) +
  theme_classic()+#去掉背景框
  geom_vline(xintercept = 0, color = 'gray', size = 0.4) + 
  geom_hline(yintercept = 0, color = 'gray', size = 0.4) +
  geom_point(size = 1.5)+  #可在这里修改点的透明度、大小
  scale_color_manual(values = brewer.pal(6,"Set2")) + #可在这里修改点的颜色
  theme(panel.grid = element_line(color = 'gray', linetype = 2, size = 0.1), 
        panel.background = element_rect(color = 'black', fill = 'transparent'), 
        legend.title=element_blank()
  )+
  labs(x = paste('PCA1: ', round(100 * pca_eig[1], 2), '%'), y = paste('PCA2: ', round(100 * pca_eig[2], 2), '%')) 

pca_plot

整体看起来还不错,就是B-和C-的学生似乎难以区分。

(2)PCoA分析及作图

 

library(ade4)
library(ggplot2)
library(RColorBrewer)
library(vegan)#用于计算距离
data(deug)
tab<-deug$tab
tab.dist<-vegdist(tab,method='euclidean')#基于euclidean距离
pcoa<- dudi.pco(tab.dist, scan = FALSE,nf=3)

#坐标轴解释量(前两轴)
pcoa_eig <- (pcoa$eig)[1:2] / sum(pcoa$eig)

#提取样本点坐标(前两轴)
sample_site <- data.frame({pcoa$li})[1:2]
sample_site$names <- rownames(sample_site)
names(sample_site)[1:2] <- c('PCoA1', 'PCoA2')

#以最终成绩作为分组
sample_site$level<-factor(deug$result,levels=c('A+','A','B','B-','C-','D'))

library(ggplot2)

pcoa_plot <- ggplot(sample_site, aes(PCoA1, PCoA2,color=level)) +
  theme_classic()+#去掉背景框
  geom_vline(xintercept = 0, color = 'gray', size = 0.4) + 
  geom_hline(yintercept = 0, color = 'gray', size = 0.4) +
  geom_point(size = 1.5)+  #可在这里修改点的透明度、大小
  scale_color_manual(values = brewer.pal(6,"Set2")) + #可在这里修改点的颜色
  theme(panel.grid = element_line(color = 'gray', linetype = 2, size = 0.1), 
        panel.background = element_rect(color = 'black', fill = 'transparent'), 
        legend.title=element_blank()
  )+
  labs(x = paste('PCoA1: ', round(100 * pcoa_eig[1], 2), '%'), y = paste('PCoA2: ', round(100 * pcoa_eig[2], 2), '%')) 

pcoa_plot

有时候PCA和PCoA的结果差不多,有时候某种方法能够把样本有效分开而另一种可能效果不佳,这些都要看样本数据的特性。
因为没有现成可供分享的微生物组数据,所以用了这个成绩的数据集。通常来说在微生物组的研究中,我们会根据物种丰度的文件对数据进行PCA或者PCoA分析,也是我们所说的beta-diveristy分析,根据PCA或者PCoA的结果看疾病组和对照组能否分开,以了解微生物组的总体变化情况。

 

### 使用生物信息学工具进行微生物PCoA分析并绘制图形 #### 准备工作 为了执行主坐标分析(PCoA),首先需要准备OTU表其他相关数据文件。这些文件通常由测序实验获得,并包含了关于样品中操作分类单元(OTUs)丰度的信息。 #### 数据预处理 确保OTU表格被正确读入R环境中,这一步骤可能涉及去除低质量的数据条目以及标准化样本间的总序列数以消除抽样深度的影响[^3]。 ```r # 假设 otu_table 是已经加载好的OTU表对象 library(vegan) # 如果有必要的话,先过滤掉稀疏特征 filtered_otu <- filter_taxa(otu_table, function(x) sum(x > 0) >= min_samples, taxa_sums(otu_table), TRUE) ``` #### 计算距离矩阵 采用Bray-Curtis相异性指数来衡量不同样本之间微生物组成的差异程度。此方法适用于相对丰度比例较高的情况。 ```r bray_curtis_dist <- vegdist(filtered_otu, method = "bray") ``` #### 执行PCoA计算 利用`cmdscale()`函数来进行经典多维尺度变换(即PCoA)。设置参数`k=2`表示只保留前两个主要维度;而`eig=TRUE`则返回特征值以便后续解释方差贡献率。 ```r pcoa_result <- cmdscale(bray_curtis_dist, k = 2, eig = TRUE) pc1 <- pcoa_result$points[, 1] pc2 <- pcoa_result$points[, 2] explained_variance <- round((pcoa_result$eig / sum(pcoa_result$eig)) * 100)[1:2] ``` #### 可视化结果 最后一步是创建一个美观且易于理解的散点图来展示各个样本的位置及其相互关系。这里使用了流行的`ggplot2`库来增强图形的表现力。 ```r library(ggplot2) df_pcoa <- data.frame(PC1 = pc1, PC2 = pc2, SampleID = rownames(filtered_otu)) ggplot(df_pcoa, aes(x = PC1, y = PC2, label = SampleID)) + geom_point(size = 4, alpha = .7) + theme_minimal() + labs(title = paste("PCoA Plot of Microbial Communities\n", sprintf("Explained Variance (PC1): %.1f%%", explained_variance[1]), "\n"), subtitle = "", caption = "") + xlab(sprintf("Principal Coordinate 1 (%.1f%%)", explained_variance[1])) + ylab(sprintf("Principal Coordinate 2 (%.1f%%)", explained_variance[2])) ``` 上述代码片段展示了如何从原始OTU表出发完成整个PCoA过程直至最终生成一张具有高度定制化的图表[^2][^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信天地

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值