文章目录
DiT原始项目
该项目仅针对DiT训练,并未包含VAE 的训练
Fast-DiT readme
该项目仅针对DiT训练,并未包含VAE 的训练
该项目是基于论文Scalable Diffusion Models with Transformers的pytorch改进实现
包含:
-
PyTorch的改进实现 和原始的DiT实现
-
在ImageNet (512x512 and 256x256)预训练的条件分类的 DiT 模型;
-
一个独立的 Hugging Face Space 和 Colab notebook,用于运行预训练的DiT-XL/2模型
启动
首先,下载开源代码
git clone https://github.com/chuanyangjin/fast-DiT.git
cd DiT
我们提供了 environment.yml
文件,可创建Conda 虚拟环境。
如果想要在本地CPU运行预训练的模型,可以在文件中删除cudatoolkit
和pytorch-cuda
相关的依赖项。
conda env create -f environment.yml
conda activate DiT
Sampling
预训练的DiT checkpoints
你可以使用