Camera Calibration 学习总结

先列出参考资料吧,

一个网上的tutorial http://lear.inrialpes.fr/people/triggs/pubs/isprs96/node1.html 不过这篇tutorial看起来比较累,它是从投影空间来看calibration的,数学的定义太多,只看了前面一点。

Camera Calibration ( Book Chapter) http://research.microsoft.com/en-us/um/people/zhang/Papers/Camera%20Calibration%20-%20book%20chapter.pdf


******************************* 齐次坐标

在之前的一篇关于坐标变换的博文  (http://blog.csdn.net/u012702874/article/details/43312957) 里面提到过齐次坐标,当时说的是齐次坐标的优点是可以很自然地区分点和向量。除了这个优点,齐次坐标还可以很有效地应用在投影中,使得投影过程可以以矩阵相乘的形式描述。


投影中齐次坐标的引入:

在三维空间上选定一个视平面位于 z=T,给定视平面上一点(x,y)即(x,y,T),视点(0,0,0)到(x,y, T)构成一个向量。如果规定一个标准的视平面为z=1,那么该向量上所有点投影到该平面都是同一个点(x/T,y/T,1). 所以事实上 齐次坐标前面乘以任意非零比例系数k,空间中的点 k*(x,y,T) 都代表z=1平面上同一个投影点(x/T,y/T)
以上解释都是基于T不等于0。当T=0时,k*(x,y,0)代表z=0平面上的直线,它们平行于z=1这个视平面,永远不相交 ==> 这些点称作无穷点


********************************  投影矩阵

上面我们说过,一旦有了齐次坐标表示,我们就可以用矩阵相乘表示3D到2D的投影过程。下面我们看怎么求得这个投影矩阵。



上图是空间中一个点M投影到视平面上一个点m的图示。焦距 f 是视点到视平面的距离


1. 我们先考虑最简单的情形,(满足下面的假设条件):

a). M 的参考坐标系是相机的坐标系本身。

b). z轴和视平面的交点(principle point)视为投影面坐标系的原点

c). u  v 是投影面坐标轴 且 u  v 正交

由相似三角形可得

所以在齐次坐标下,矩阵表示为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值