文章写作初衷:
由于本人用的电脑是win10操作系统,也带有gpu显卡。在研究车位识别过程中想使用yolov3作为训练模型。翻看安装yolo的过程中有看到 https://pjreddie.com/darknet/yolo/ 这是linux安装yolo最详细的文档(如果大家使用的是linux强烈推荐该文档)。本来想在自己的win10系统上安装一个虚拟机并安装linux操作系统,但是后来在论坛中有人说是双系统,虚拟机的显卡是虚拟出来的,没法用cuda加速,只能作罢。于是搜索win10下如何安装yolov3,搜到一篇文章 https://zhuanlan.zhihu.com/p/35828626 ,由于yolo是由c/c++编写,win10需要安装配置Visual Studio进行yolo的配置修改和运行。但是自己电脑并没有配置相应的Visual Studio,也嫌麻烦不想安装。在迟疑之际忽然搜到有win10下keras版本的yolov3(由于之前电脑已经配置好了keras,再使用就显得方便很多。)。搜到很多的文章,但是有一篇无疑是最值得推荐的 Patrick_Lxc大神写的博客: https://blog.csdn.net/Patrick_Lxc/article/details/80615433。虽然大神写的已经够详细,但是自己在实现过程中也发现有几个不太好注意的地方,因为本人复现代码用了大半天,还是希望别人用更快的速度去实现yolo的使用和训练自己的模型。这也是写作文章的初衷。
一、环境要求
tensorflow-gpu
keras
pycharm
二、快速使用
1、下载yolov3代码:https://github.com/qqwweee/keras-yolo3 ,并解压缩之后用pycharm打开。
2、下载权重:https://pjreddie.com/media/files/yolov3.weights并将权重放在keras-yolo3的文件夹下。如下图所示:
3、执行如下命令将darknet下的yolov3配置文件转换成keras适用的h5文件。
python convert.py yolov3.cfg yolov3.weights model_data/yolo.h5
4、运行预测图像程序
python yolo.py
输入需要预测的图片路径即可,结果示例如下:
这样就可以实现yolov3的快速使用了。
三、训练自己的数据集进行目标检测
1、在工程下新建一个文件夹VOCdevkit,目录结构为VOCdevkit/VOC2007/,