windows10+keras下的yolov3的快速使用及自己数据集的训练

文章写作初衷:

       由于本人用的电脑是win10操作系统,也带有gpu显卡。在研究车位识别过程中想使用yolov3作为训练模型。翻看安装yolo的过程中有看到 https://pjreddie.com/darknet/yolo/  这是linux安装yolo最详细的文档(如果大家使用的是linux强烈推荐该文档)。本来想在自己的win10系统上安装一个虚拟机并安装linux操作系统,但是后来在论坛中有人说是双系统,虚拟机的显卡是虚拟出来的,没法用cuda加速,只能作罢。于是搜索win10下如何安装yolov3,搜到一篇文章 https://zhuanlan.zhihu.com/p/35828626 ,由于yolo是由c/c++编写,win10需要安装配置Visual Studio进行yolo的配置修改和运行。但是自己电脑并没有配置相应的Visual Studio,也嫌麻烦不想安装。在迟疑之际忽然搜到有win10下keras版本的yolov3(由于之前电脑已经配置好了keras,再使用就显得方便很多。)。搜到很多的文章,但是有一篇无疑是最值得推荐的 Patrick_Lxc大神写的博客: https://blog.csdn.net/Patrick_Lxc/article/details/80615433。虽然大神写的已经够详细,但是自己在实现过程中也发现有几个不太好注意的地方,因为本人复现代码用了大半天,还是希望别人用更快的速度去实现yolo的使用和训练自己的模型。这也是写作文章的初衷。

一、环境要求

      tensorflow-gpu

      keras

      pycharm

二、快速使用

      1、下载yolov3代码:https://github.com/qqwweee/keras-yolo3 ,并解压缩之后用pycharm打开。

      2、下载权重:https://pjreddie.com/media/files/yolov3.weights并将权重放在keras-yolo3的文件夹下。如下图所示:

             

      3、执行如下命令将darknet下的yolov3配置文件转换成keras适用的h5文件。

             python convert.py yolov3.cfg yolov3.weights model_data/yolo.h5

      4、运行预测图像程序

             python yolo.py

             

            输入需要预测的图片路径即可,结果示例如下:

            

           这样就可以实现yolov3的快速使用了。

三、训练自己的数据集进行目标检测

          1、在工程下新建一个文件夹VOCdevkit,目录结构为VOCdevkit/VOC2007/,

评论 639
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值