基于Transformer变体的时间序列预测

目前,以CNN、RNN和 Transformer 模型为代表的深度学习算法已经超越了传统机器学习算法,成为了时间序列预测领域一个新的研究趋向。 这其中,基于Transformer架构的模型在时间序列预测中取得了丰硕的成果。

Transformer模型因其强大的序列建模能力,很适合时间序列这种也是序列类型的数据结构。但与文本序列相比,时间序列具有很多独特的特征,比如自相关性、周期性以及长周期性预测,这些特性给Transformer在时间序列预测场景中的应用带来了新的挑战。

为了克服这些挑战,满足预测任务的高效率和高精度需求,研究者对原始的Transformer结构进行了改造,比如无需修改任何模块,即在复杂时序预测任务中取得全面领先的iTransformer。

iTransformer

iTransformer: Inverted Transformers Are Effective for Time Series Forecasting

方法: 本文提出了一种新的时间序列预测模型iTransformer,通过将每个时间序列作为变量令牌进行建模,利用自注意力机制捕捉多变量之间的相关性,并利用前馈网络编码序列表示。

创新点:

  • iTransformer采用了Transformer的编码器架构,包括嵌入、投影和Transformer块。这种架构的创新在于将时间序列的每个变量独立地嵌入为变量标记,通过自注意力机制捕捉多变量之间的相关性,并通过共享的前馈网络对每个TrmBlock中的序列进行独立处理。

  • iTransformer通过将时间序列的每个变量独立地嵌入为变量标记,解决了传统Transformer架构中将多个变量嵌入为一个时间标记的问题。这种反转的操作使得嵌入的标记能够更好地捕捉时间序列的全局特征,并且能够更好地利用多变量之间的相关性。

在这里插入图片描述

关于iTransformer更为详细的介绍可以参考博客:Transformer王者归来!无需修改任何模块,时序预测全面领先

Pathformer

Pathformer: Multi-Scale Transformers With Adaptive Pathways For Time Series Forecasting

方法: 论文提出了一种自适应多尺度建模方法,即基于多尺度Transformer的自适应路径模型。该模型包含两个主要组件:多尺度路由器和多尺度聚合器。多尺度路由器根据输入数据选择特定大小的分块划分,并通过激活Transformer中的特定部分来控制多尺度特征的提取。路由器与多尺度聚合器配合使用,通过加权聚合将这些特征组合起来,得到Transformer块的输出。

创新点:

  • 自适应多尺度建模的AMS Block设计,其中包括多尺度Transformer块和自适应路径。该设计通过多尺度Transformer块和自适应路径实现自适应多尺度建模,能够捕捉不同尺度特征的变化,提高预测准确性。

  • 引入噪声项来增加路径权重生成过程的随机性,避免一直选择少数几个尺度,从而忽视其他潜在有用的尺度。这种引入噪声的方法可以使多尺度Transformer块更全面地建模不同时间分辨率和时间距离,提高多尺度建模的效果。
    在这里插入图片描述

scaleformer

SCALEFORMER: ITERATIVE MULTI-SCALE REFINING TRANSFORMERS FOR TIME SERIES FORECASTING

方法: 论文提出了一个通用的多尺度框架,可以应用于最先进的基于Transformer的时间序列预测模型(如FEDformer、Autoformer等)。通过在多个尺度上共享权重,引入架构调整和特殊设计的归一化方案,作者在基准Transformer架构上实现显著的性能改进,对于不同的数据集和Transformer架构,改进范围从5.5%到38.5%不等,并且额外的计算开销很小。

创新点:

  • 作者提出了一个多尺度框架,可以应用于最先进的基于transformer的时间序列预测模型(如FEDformer、Autoformer等),通过在多个尺度上迭代地改进预测的时间序列,引入架构适应性和特殊设计的归一化方案,能够在数据集和transformer架构上实现显著的性能改进。

  • 作者展示了Scaleformer在概率预测和非transformer模型方面的适用性,并提出了未来工作的方向。

在这里插入图片描述

InParformer

InParformer: Evolutionary Decomposition Transformers with Interactive Parallel Attention for Long-Term Time Series Forecasting

方法: 本文提出了一种名为InParformer的基于Transformer的长期时间序列预测模型。传统的时间序列预测方法主要集中在统计方法上,如ARIMA和指数平滑,对于建模非线性时间动态有困难。为了解决这个问题,引入了经典的机器学习模型,如支持向量回归(SVR)和梯度增强树。

创新点:

  • InPar Attention机制:提出了一种交互并行注意力机制,用于在频率和时间域中全面学习长程依赖关系。

  • EvoSTD模块:引入了进化季节趋势分解模块,用于增强复杂时间模式的提取能力。

在这里插入图片描述

参考资料

<think>好的,用户想了解机器学习中的Transformer变体算法。首先,我需要回顾一下Transformer的基本结构,这样可以为后续变体部分打下基础。Transformer最初由Vaswani等人在2017年提出,核心是自注意力机制,用于捕捉序列中的长距离依赖关系,取代了传统的RNN和CNN结构。 接下来,用户可能想知道主要的变体有哪些。根据现有的知识,常见的变体包括模型结构优化、计算效率提升、领域适配等方向的改进。比如,BERT采用了双向Transformer编码器,而GPT系列则专注于单向解码器结构。此外,还有稀疏注意力机制,如Longformer和BigBird,用于处理长序列问题。 然后,需要考虑这些变体的具体应用场景。例如,视觉Transformer(ViT)将Transformer应用于图像分类,通过将图像分块处理。时间序列预测中的Temporal Fusion Transformer(TFT)也是一个例子。这些信息需要整理清楚,确保用户能理解不同变体的适用领域。 另外,用户可能对如何选择适合的Transformer变体感兴趣,因此需要归纳选择时的考虑因素,如任务类型、数据规模、计算资源等。同时,还要提到最新的研究趋势,比如结合MoE架构的Switch Transformer,以及更高效的架构设计如FlashAttention。 最后,根据用户提供的引用内容,虽然引用[2]提到的是机器人学习的预训练模型,可能与Transformer在机器人领域的应用相关,但用户的问题更侧重于算法变体本身,所以这部分引用可能不需要直接涉及。不过,可以提及Transformer在跨模态任务中的应用,如视觉-语言模型,作为变体的扩展应用之一。 需要确保回答结构清晰,分点列出主要变体类型,每个类型下有具体例子和说明,并覆盖应用场景和选择建议。同时,生成的相关问题要围绕变体的优化、应用、比较等方面,帮助用户进一步探索。</think>### Transformer变体算法解析 Transformer自2017年提出后,其变体算法主要围绕**模型结构优化**、**计算效率提升**和**领域适配**三个方向演进。以下是主要分类及代表性算法: --- #### 一、结构优化型变体 1. **BERT**(双向编码器) - 特点:仅使用Transformer编码器,通过掩码语言建模实现双向语义理解 - 公式:$$ \text{MLM}(x) = \text{softmax}(W_h h_{\[MASK\]}) $$ - 应用:文本分类、问答系统 2. **GPT系列**(自回归解码器) - 特点:堆叠单向解码器,通过自回归生成实现文本续写 - 架构:$$ p(x_{1:T}) = \prod_{t=1}^T p(x_t | x_{1:t-1}) $$ - 演进:从GPT-3的1750亿参数到GPT-4的混合专家系统[^1] --- #### 二、效率提升型变体 | 算法 | 创新点 | 计算复杂度 | |---------------|-------------------------|-------------| | Linformer | 低秩投影注意力 | $O(n)$ | | Reformer | 局部敏感哈希+分块注意力 | $O(n\log n)$| | FlashAttention| 显存优化算法 | 提升3倍训练速度 | 其中**FlashAttention**通过重计算机制减少GPU显存占用,其核心公式: $$ \text{Attention}(Q,K,V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V $$ --- #### 三、领域适配型变体 1. **ViT**(视觉Transformer) - 将图像切分为16x16图块作为token - 位置编码公式:$$ p_{i,j} = \text{Conv}(x_{i:i+16,j:j+16}) $$ 2. **T5**(统一文本框架) - 将所有NLP任务转化为text-to-text格式 - 示例:`"翻译英文到中文: Hello world → 你好世界"` 3. **ST-MoE**(稀疏专家系统) - 动态路由机制:每个token仅激活部分专家网络 - 公式:$$ y = \sum_{i=1}^n g_i(x)E_i(x) $$ --- #### 四、最新进展(2023) 1. **Retentive Network**(RetNet) - 同时支持并行训练与递归推理 - 在语言建模任务中达到Transformer的97%准确率 2. **Hyena Hierarchy** - 用卷积替代注意力机制 - 在长文本任务中实现更好的长度外推能力 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值