根据搜索结果,以下是一些在时间序列预测领域表现优秀的模型:
-
N-BEATS:由ElementAI提出的模型,基于集成前馈网络的深度堆栈,模拟拟合ARIMA模型时的Box-Jenkins方法。
-
DeepAR:由Amazon提出的模型,使用自回归循环网络进行概率预测。
-
Spacetimeformer:该模型将输入扁平化为一个大向量,称为时空序列,以包含时间、空间和上下文信息统一的嵌入。
-
Temporal Fusion Transformer (TFT):由Google发布的基于Transformer的时间序列预测模型,支持在多个异构时间序列上构建模型,并强调可解释性。
-
TSFormer:被称为时间序列中的MAE,用于时间序列预测的模型。
-
iTransformer:提出了一种新颖的周期性解耦框架(PDF),通过捕获2D时间变化建模来进行长期序列预测。
-
FITS:提出了一种新颖的周期性解耦框架(PDF),通过捕获2D时间变化建模来进行长期序列预测。
-
TEMPO:提出了一种用于时间序列预测的GPT模型。
-
TACTiS-2:一个灵活的多变量概率时间序列预测模型,简化了attentional copulas,在不同的预测任务中具有最先进的精度,同时支持插值和从不规则数据中学习。
-
STanHop:提出了STanHop-Net,一种新颖的时间序列预测模型,将基于Hopfield的模块与外部存储模块相结合,增强学习能力,对突发事件快速响应,并具有卓越的理论保证和经验性能。
这些模型代表了时间序列预测领域的最新进展,它们在处理不同类型和规模的时间序列数据时展现了优异的性能。
其他
根据您的请求,除了之前提到的模型外,以下是一些其他在时间序列预测领域表现优秀的模型:
1. **自回归(AR)模型**:这是时间序列分析中的基础模型之一,假设序列中的每个观测值都可以表示为其前p个观测值的线性组合加上一个随机误差项。
2. **移动平均(MA)模型**:MA模型假设时间序列的当前值可以表示为当前和过去的白噪声误差项的线性组合。
3. **自回归移动平均(ARMA)模型**:结合了自回归(AR)和移动平均(MA)模型的特性,能够同时捕捉时间序列的自相关性和移动平均特性。
4. **自回归积分移动平均(ARIMA)模型**:ARIMA模型是ARMA模型的扩展,可以处理非平稳时间序列数据,通过差分来使序列变得平稳。
5. **季节性自回归积分移动平均(SARIMA)模型**:SARIMA模型是ARIMA模型的扩展,专门用于处理具有季节性模式的时间序列数据。
6. **向量自回归(VAR)模型**:VAR模型是用于多变量时间序列分析的统计模型,将每个变量表示为其自身滞后值和其他变量滞后值的线性函数。
7. **简单指数平滑(SES)模型**:这是一种基本的时间序列预测方法,它对过去的观测值赋予指数递减的权重,适用于没有明显趋势或季节性的数据。
8. **Holt-Winters指数平滑(HWES)模型**:HWES是SES的扩展,可以处理具有趋势和季节性的数据。
9. **广义自回归条件异方差(GARCH)模型**:GARCH模型用于建模时间序列数据的条件异方差性,特别是金融时间序列数据的波动性。
10. **Prophet模型**:由Facebook开发的一种开源的多变量时间序列预测框架,适用于具有季节性、趋势性和节假日等复杂特征的预测问题。
11. **混合模型预测**:将多个预测模型的结果结合起来,以得到更好的预测结果。
12. **频域方法预测**:通过分析数据的频率成分来进行预测,特别适用于具有明显周期性的数据。
13. **异常检测预测**:旨在识别和预测异常时间点的方法,常用于信用卡欺诈检测、网络入侵检测等场景。
这些模型各自有其特点和适用场景,选择合适的模型需要根据具体的时间序列数据特征和预测目标来决定。
其他
根据您的请求,除了之前提到的模型外,以下是一些其他在时间序列预测领域表现优秀的模型:
1. **时间卷积网络(TCN)**:TCN是一种适用于时间序列预测的卷积神经网络,它通过因果卷积和扩张卷积来捕捉时间序列数据中的长距离依赖关系。
2. **经验模态分解(EEMD)与奇异谱分析(SSA)**:EEMD是一种改进的经验模态分解方法,通过添加白噪声来减少模态混叠问题。SSA是一种非参数时间序列分析方法,通过奇异值分解将时间序列分解为若干个具有不同特征的子序列,从而分离出趋势项、周期项和噪声项。
3. **蛇群算法优化的CNN-GRU(SO-CNN-GRU)**:这是一种结合了卷积神经网络和门控循环单元的模型,通过蛇群算法优化模型参数,以提高预测精度和泛化能力。
5 FOST 以及微软最新的,好像都是时空纬度
代码实现
4. **量子粒子群优化算法(QPSO)与双向门控循环单元(BiGRU)**:QPSO是一种基于粒子群优化的算法,结合BiGRU模型,用于优化BiGRU的参数,以提高时间序列预测的性能。
5. **支持向量回归(SVR)**:SVR是一种基于支持向量机的回归模型,可以用于时间序列预测任务。
6. **随机森林(RF)**:随机森林是一种集成学习方法,通过构建多个决策树并输出平均结果来提高预测的准确性和鲁棒性。
7. **极限学习机(ELM)**:ELM是一种前馈神经网络训练算法,以其简单和快速的训练过程而闻名,适用于时间序列预测。
8. **长短记忆网络(LSTM)及其变体**:包括LSTM、BiLSTM、CNN-LSTM等,这些模型通过引入门控机制来解决梯度消失问题,能够更好地记住远期信息。
9. **Transformer及变体**:Transformer模型通过自注意力机制处理序列数据,适用于时间序列预测,其变体如Informer等专门针对时间序列数据设计。
这些模型各有特点和适用场景,选择合适的模型需要根据具体的时间序列数据特征和预测目标来决定。
其他
根据您的请求,除了之前提到的模型外,以下是一些其他在时间序列预测领域表现优秀的模型,这些模型也得到了搜索结果的支持:
1. **iTransformer**:提出了一种新颖的周期性解耦框架(PDF),通过捕获2D时间变化建模来进行长期序列预测。
2. **ClimODE**:引入了一种受物理学启发的新颖的气候建模方法,使用常微分方程捕获潜在的归纳偏差并允许预测中的不确定性量化。
3. **FITS**:提出了一种新颖的周期性解耦框架(PDF),通过捕获2D时间变化建模来进行长期序列预测。
4. **TEMPO**:提出了一种用于时间序列预测的GPT模型。
5. **TACTiS-2**:一个灵活的多变量概率时间序列预测模型,简化了attentional copulas,在不同的预测任务中具有最先进的精度,同时支持插值和从不规则数据中学习。
6. **STanHop**:提出了STanHop-Net,一种新颖的时间序列预测模型,将基于Hopfield的模块与外部存储模块相结合,增强学习能力,对突发事件快速响应,并具有卓越的理论保证和经验性能。
7. **Autoformer**:提出了一种基于Transformer结构的时序预测模型,采用自注意力机制和Transformer结构,能够并行计算,提高训练效率,并支持多任务学习。
8. **LSTNet**:结合了长短期记忆网络(LSTM)和一维卷积神经网络(1D-CNN),能够有效地处理长期和短期时间序列信息,同时还能够捕捉序列中的季节性和周期性变化。
9. **TDAN**:通过融合卷积神经网络和注意力机制来捕捉时间序列的时序特征,提高时序预测的准确性。
10. **DeepAR**:一个自回归循环神经网络,使用递归神经网络 (RNN) 结合自回归AR来预测标量(一维)时间序列。
11. **N-BEATS**:使用基于学习的基函数对时间序列数据进行表示,从而能够在保持高精度的同时提高模型的可解释性。
12. **NeuralProphet**:基于神经网络的时间序列预测框架,结合了Prophet框架和神经网络结构,可以更准确地预测具有复杂非线性趋势和季节性的时间序列数据。
这些模型代表了时间序列预测领域的最新进展,它们在处理不同类型和规模的时间序列数据时展现了优异的性能。选择合适的模型需要根据具体的时间序列数据特征和预测目标来决定。
其他
根据您的请求,除了之前提到的模型外,以下是一些其他在时间序列预测领域表现优秀的模型:
1. **ClimODE**:引入了一种受物理学启发的新颖的气候建模方法,使用常微分方程捕获潜在的归纳偏差并允许预测中的不确定性量化。
2. **FITS**:提出了一种新颖的周期性解耦框架(PDF),通过捕获2D时间变化建模来进行长期序列预测。
3. **TEMPO**:提出了一种用于时间序列预测的GPT模型。
4. **Time Series Continuous Modeling for Imputation and Forecasting with Implicit Neural Representations**:提出了一种用于时间序列插补和预测的深度连续模型,可以处理不规则采样时间序列和新样本。
5. **TACTiS-2**:一个灵活的多变量概率时间序列预测模型,简化了attentional copulas,在不同的预测任务中具有最先进的精度,同时支持插值和从不规则数据中学习。
6. **Copula Conformal prediction for multi-step time series prediction**:通过使用copula对时间步长的依赖性进行建模,显着提高共形预测置信区间的效率/清晰度,用于多步时间序列预测。
7. **STanHop**:提出了STanHop-Net,一种新颖的时间序列预测模型,将基于Hopfield的模块与外部存储模块相结合,增强学习能力,对突发事件快速响应,并具有卓越的理论保证和经验性能。
8. **Periodicity Decoupling Framework for Long-term Series Forecasting**:提出了一种新颖的周期性解耦框架(PDF),通过捕获2D时间变化建模来进行长期序列预测。
9. **Self-Supervised Contrastive Forecasting**:提出了一种自监督对比学习方法,用于时间序列预测。
这些模型代表了时间序列预测领域的最新进展,它们在处理不同类型和规模的时间序列数据时展现了优异的性能。选择合适的模型需要根据具体的时间序列数据特征和预测目标来决定。
还有
根据您的请求,以下是一些在时间序列预测领域表现优秀的模型,这些模型在2024年的搜索结果中得到了提及:
1. **An Analysis of Linear Time Series Forecasting Models**:这项研究比较了线性时间序列预测模型,探讨了它们的功能等价性、模型比较、闭式解等。
2. **Deep Functional Factor Models**:该模型通过贝叶斯非参数因子分解预测高维功能时间序列。
3. **Transformers with Loss Shaping Constraints for Long-Term Time Series Forecasting**:这项工作探讨了长时预测和约束学习。
4. **Unified Training of Universal Time Series Forecasting Transformers**:提出了大规模预训练模型(没有语言,但是够大),用于时序预测。
5. **CATS**:通过构建辅助时间序列作为外生变量,增强多变量时间序列预测。
6. **SIN**:选择性和可解释的归一化用于长期时间序列预测。
7. **A decoder-only foundation model for time-series forecasting**:提出了一种仅解码器的基础模型用于时间序列预测。
8. **Efficient and Effective Time-Series Forecasting with Spiking Neural Networks**:使用脉冲神经网络进行高效和有效的时间序列预测。
9. **SparseTSF**:用1k参数建模长期时间序列预测。
10. **Irregular Multivariate Time Series Forecasting**:提出了一种可变形的补丁图神经网络方法,用于不规则多变量时间序列预测。
11. **Learning Optimal Projection for Forecast Reconciliation of Hierarchical Time Series**:学习最优投影用于层次化时间序列预测的协调。
12. **Time-Series Forecasting for Out-of-Distribution Generalization Using Invariant Learning**:使用不变学习进行分布外泛化的时序预测。
这些模型代表了时间序列预测领域的最新进展,它们在处理不同类型和规模的时间序列数据时展现了优异的性能。选择合适的模型需要根据具体的时间序列数据特征和预测目标来决定。
其他
根据您的请求,以下是一些在时间序列预测领域表现优秀的模型,这些模型在2024年的搜索结果中得到了提及:
1. **An Analysis of Linear Time Series Forecasting Models**:这项研究比较了线性时间序列预测模型,探讨了它们的功能等价性、模型比较、闭式解等。
2. **Deep Functional Factor Models**:该模型通过贝叶斯非参数因子分解预测高维功能时间序列。
3. **Transformers with Loss Shaping Constraints for Long-Term Time Series Forecasting**:这项工作探讨了长时预测和约束学习。
4. **Unified Training of Universal Time Series Forecasting Transformers**:提出了大规模预训练模型(没有语言,但是够大),用于时序预测。
5. **CATS**:通过构建辅助时间序列作为外生变量,增强多变量时间序列预测。
6. **SIN**:选择性和可解释的归一化用于长期时间序列预测。
7. **A decoder-only foundation model for time-series forecasting**:提出了一种仅解码器的基础模型用于时间序列预测。
8. **Efficient and Effective Time-Series Forecasting with Spiking Neural Networks**:使用脉冲神经网络进行高效和有效的时间序列预测。
9. **SparseTSF**:用1k参数建模长期时间序列预测。
10. **Irregular Multivariate Time Series Forecasting**:提出了一种可变形的补丁图神经网络方法,用于不规则多变量时间序列预测。
11. **Learning Optimal Projection for Forecast Reconciliation of Hierarchical Time Series**:学习最优投影用于层次化时间序列预测的协调。
12. **Time-Series Forecasting for Out-of-Distribution Generalization Using Invariant Learning**:使用不变学习进行分布外泛化的时序预测。
这些模型代表了时间序列预测领域的最新进展,它们在处理不同类型和规模的时间序列数据时展现了优异的性能。选择合适的模型需要根据具体的时间序列数据特征和预测目标来决定。
根据您的请求,以下是一些在时间序列预测领域表现优秀的模型,这些模型在2024年的搜索结果中得到了提及:
1. **iTransformer**:提出了一种新颖的周期性解耦框架(PDF),通过捕获2D时间变化建模来进行长期序列预测。
2. **ClimODE**:引入了一种受物理学启发的新颖的气候建模方法,使用常微分方程捕获潜在的归纳偏差并允许预测中的不确定性量化。
3. **FITS**:提出了一种新颖的周期性解耦框架(PDF),通过捕获2D时间变化建模来进行长期序列预测。
4. **TEMPO**:提出了一种用于时间序列预测的GPT模型。
5. **TACTiS-2**:一个灵活的多变量概率时间序列预测模型,简化了attentional copulas,在不同的预测任务中具有最先进的精度,同时支持插值和从不规则数据中学习。
6. **STanHop**:提出了STanHop-Net,一种新颖的时间序列预测模型,将基于Hopfield的模块与外部存储模块相结合,增强学习能力,对突发事件快速响应,并具有卓越的理论保证和经验性能。
7. **CycleNet**:通过建模周期模式增强时间序列预测,引入了残差周期预测(RCF)技术,该技术利用可学习循环周期来建模序列中固有的周期模式,并对已建模周期的剩余残差分量进行预测。
8. **Time-LLM**:通过重新编程大型语言模型(LLM)用于时间序列预测,同时保留其核心结构。
9. **Interpretable Sparse System Identification**:提出了一种新的可解释稀疏系统识别方法,用于时间序列预测,它结合了基于知识和数据驱动的方法,利用傅里叶基处理时间序列数据,并通过稀疏优化实现高精度预测。
10. **Retrieval-Augumented Diffusion Models for Time Series Forecasting**:提出了一种结合检索增强的扩散模型用于时间序列预测。
11. **Attractor Memory for Long-Term Time Series Forecasting: A Chaos Perspective**:从混沌的角度提出了一种吸引子记忆方法用于长期时间序列预测。
12. **Ada-MSHyper**:提出了一种自适应多尺度超图Transformer用于时间序列预测。
13. **FilterNet**:利用频率过滤器进行时间序列预测。
14. **Frequency Adaptive Normalization For Non-stationary Time Series Forecasting**:提出了一种频率自适应归一化方法用于非平稳时间序列预测。
15. **Rethinking the Power of Timestamps for Robust Time Series Forecasting: A Global-Local Fusion Perspective**:从全局-局部融合的角度重新思考时间戳的力量,以进行稳健的时间序列预测。
这些模型代表了时间序列预测领域的最新进展,它们在处理不同类型和规模的时间序列数据时展现了优异的性能。选择合适的模型需要根据具体的时间序列数据特征和预测目标来决定。
gan
根据您的请求,以下是一些在时间序列预测领域中应用生成对抗网络(GAN)的模型:
1. **TimeGAN (Time-series Generative Adversarial Network)**:TimeGAN是一种合成时间序列数据的实现,它结合了无监督GAN方法的多功能性与对有监督自回归模型提供的条件概率原理,以生成保留时间动态的时间序列。
2. **C-RNN-GAN (Continuous RNN-GAN)**:C-RNN-GAN是使用GAN生成连续序列数据的一个例子,其中生成器是一个RNN,判别器是一个双向RNN,允许判别器在两个方向上获取序列上下文。
3. **RCGAN (Recurrent Conditional GAN)**:RCGAN在架构上与C-RNN-GAN不同,使用了RNN LSTM,但判别器是单向的,G的输出在下一个时间步不会作为输入反馈。该模型还以其他信息为条件,构成了条件RGAN。
4. **SC-GAN (Sequentially Coupled GAN)**:SC-GAN是一种使用GAN对连续序列数据进行降噪的新方法,其中生成器不会从潜在空间中采样,而是试图从嘈杂的EEG信号输入中生成清晰的信号。
5. **SynSigGAN**:SynSigGAN旨在生成不同类型的连续生理/生物医学信号数据,如心电图(ECG)、脑电图(EEG)、肌电图(EMG)和光电容积描记图(PPG)。它使用双向网格长短期记忆(BiGridLSTM)作为生成器和CNN作为鉴别器。
6. **DoppelGANger**:DoppelGANger是基于GAN的框架,具有一些创新,使生成复杂顺序数据集的合成版本成为可能。它引入了两项创新:一种学习策略,可加快GAN的收敛速度并避免模式崩溃。
7. **Quant GAN**:Quant GAN是一种数据驱动模型,旨在捕捉金融时间序列数据中的长期依赖关系。生成器和鉴别器都使用带有跳跃连接的时间卷积网络(TCN),它本质上是膨胀的因果卷积网络。
这些模型展示了GAN在时间序列预测领域的多样性和应用潜力,它们在处理不同类型和规模的时间序列数据时展现了优异的性能。选择合适的模型需要根据具体的时间序列数据特征和预测目标来决定。