VLM 系列——中文CLIP——论文解读

37 篇文章 17 订阅 ¥89.90 ¥99.00
本文深入解读了VLM系列中的中文CLIP模型,涵盖模型结构、训练策略、数据处理和实验结果。重点讨论了模型在多维度任务上的表现,包括检索性能、零样本分类和知识蒸馏等,并指出了未来研究中待解决的数据和模型问题。
摘要由CSDN通过智能技术生成

一、概述

1、是什么

    CLIP 的中文版《Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese》,训练使用2亿 图-文 对的对比学习(不是LLM的预测下一个token),是一个双塔模型(图像和文本各子拥有一个编码器)。由于对齐了图像和文本特征,可以用来做:图-图(文章中没有相关测试任务)、图-文、文-图、文-文(文章中没有相关测试任务)的检索,当然 图-文 和 文-图 检索 也可以转化为zero-shot 的分类。

2、亮点

    *开源代码、模型(多个版本模型:图像编码器提供5种,参数量77-958M)、demo,并且提供用于部署的NVIDIA TensorRT和ONNX模型,比用于推理的Pytorch模型快2到10倍。
    *消融实验后验证,两阶段训练更优:使用CLIP初始化,先训练文本编码器;再联合训练。
    *在MUGE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TigerZ*

你点滴支持,我持续创作,羞羞

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值