Linux平台利用Ollama和Open WebUI部署大模型

本文详细指导了如何在Linux平台上通过Docker安装Ollama和OpenWebUI,以简化大型深度学习模型的部署过程,提供友好的用户界面进行模型管理与监控。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

在当今的人工智能领域,部署大型深度学习模型是一个挑战,尤其是对于那些不熟悉复杂技术栈的用户而言。然而,随着开源技术的不断发展,出现了一些强大的工具,如 Ollama 和 Open WebUI,使得部署大型模型变得更加简单和高效。

Ollama 是一个功能强大的开源平台,专门用于部署深度学习模型。

与此同时,Open WebUI 是一个开源的 Web 用户界面工具,为用户提供了友好的界面来与 Ollama 平台进行交互。通过 Open WebUI,用户可以直观地浏览模型的性能指标、调整模型参数,并进行部署和监控。

本文将介绍如何利用 Ollama 和 Open WebUI 在 Linux 平台上部署大型深度学习模型。通过简单的步骤,您将能够快速搭建起一个高效的模型部署环境


一、Ollama 安装

Ollama 的安装步骤如下:

  1. 安装 Docker

    首先,确保您的系统已经安装了 Docker。您可以按照 Docker 官方文档提供的指南来安装 Docker:https://docs.docker.com/get-docker/

  2. 拉取 Ollama 镜像

    打开终端或命令提示符,运行以下命令来拉取 Ollama 镜像:

    docker pull ollama/ollama
    

    这将从 Docker Hub 上下载 Ollama 的最新版本。

  3. 运行 Ollama 容器

### 部署 Ollama Open WebUI 的环境准备 为了在本地环境中成功部署OllamaOpen WebUI,确保计算机满足最低硬件要求并已安装必要的软件依赖项[^1]。 - **操作系统**: 支持Windows、macOS以及Linux。 - **Python版本**: 推荐使用Python 3.8以上版本。 - **其他工具**: 安装Docker以简化容器化应用的管理部署过程;Git用于克隆项目仓库。 ### 下载与配置 Ollama 及其关联组件 获取最新版Ollama源码或二进制文件,并按照官方文档指示完成初步设置工作。对于希望快速上手的新用户来说,利用预构建镜像可能是最便捷的方式之一。 ```bash git clone https://github.com/ollama-project/ollama.git cd ollama docker-compose up -d --build ``` 上述命令会自动拉取所需资源并启动服务端口监听于`localhost:7860`处等待进一步指令。 ### 构建及运行 Open WebUI 应用程序 接着转向前端部分——即图形化的交互平台建设: #### 获取代码库 前往指定页面下载对应分支下的压缩包或是直接运用Git客户端执行如下操作来同步远程仓库至本地磁盘内: ```bash git clone https://github.com/open-webui/webui.git ``` #### 修改默认参数设定 编辑位于根目录下名为`.env.example`的环境变量定义文件(可根据实际情况调整),重命名为`.env`以便生效: ```plaintext PORT=3000 OLLAMA_API_URL=http://localhost:7860/api/v1/ SECRET_KEY=some_random_string_here DEBUG=True ALLOWED_ORIGINS=localhost,127.0.0.1 ``` 此处特别注意API接口路径需指向先前已经激活的服务实例位置[^2]。 #### 启动Web应用程序 确认所有前置条件均已妥善处理完毕之后,切换到项目所在的工作空间里边去触发下列脚本从而开启HTTP服务器进程供外部访问连接之用: ```bash npm install && npm run dev ``` 此时应当能够在浏览器中通过访问`http://localhost:3000`看到预期中的登陆界面了。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值