最优化方法Python计算:无约束优化应用——神经网络分类模型

本文介绍了如何使用MLPClassifier类构建神经网络模型,以乳腺癌数据集为例进行训练和测试。通过数据预处理,构建了一个包含两个隐藏层的神经网络,用于分类良性与恶性乳腺癌,测试结果显示模型在剩余数据上的正确率较高。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Hello, 2024.
用MLPModel类(详见博文《最优化方法Python计算:无约束优化应用——神经网络回归模型》)和Classification类(详见博文《最优化方法Python计算:无约束优化应用——逻辑分类模型》)可以构建用于分类的神经网络。

class MLPClassifier(Classification, MLPModel):
    '''神经网络分类模型'''        

用MLPClassifier解决下列案例。
综合案例
乳腺癌是困扰女性的一种疾病。随着医学科学的长足发展,许多病人通过手术可解除病痛,延续生命。然而,根据检查数据对患者的正确诊断是有效治疗的前提。文件breast-cancer-wisconsin.csv(来自UC Irvine Machine Learning Repository)记录了699例病人的记录。

编号 肿块密度 大小均匀性 形状均匀性 边缘粘附性 单一细胞大小 裸核 乏味染色体 正常核 有丝分裂 分类
1000025 5 1 1 1 2 1 3 1 1 2
1002945 5 4 4 5 7 10 3 2 1 2
1015425 3 1 1 1 2 2 3 1 1 2
⋮ \vdots ⋮ \vdots ⋮ \vdots ⋮ \vdots
### 如何正确设置BP神经网络模型的损失函数 为了提高BP神经网络模型的训练效果,合理配置损失函数至关重要。损失函数用于衡量预测输出与实际目标之间的差异,其设计直接影响到模型的学习效率和最终性能。 #### 选择合适的损失函数类型 对于不同类型的任务,应选用不同的损失函数: - **分类问题**:通常采用交叉熵损失作为标准选项。二元分类可使用`binary_crossentropy`;多类别分类则适用`sparse_categorical_crossentropy`或`categorical_crossentropy`[^4]。 - **回归问题**:均方误差(MSE)、平均绝对误差(MAE)是比较常见的选择。其中,MSE对异常值敏感,适合数据分布较为集中的情况;而MAE相对稳健,能更好地处理含有噪声的数据集[^3]。 #### 考虑正则化项的影响 为了避免过拟合现象的发生,在构建损失函数时可以加入L1/L2正则化项。通过控制权重参数大小来简化模型结构,从而增强泛化能力。具体形式如下所示: ```python from tensorflow.keras import regularizers model.add(Dense(64, input_dim=64, kernel_regularizer=regularizers.l2(0.01))) ``` 此代码片段展示了如何在Keras框架下为全连接层添加L2正则化约束。 #### 动态调整学习率策略 除了静态设定外,还可以考虑引入自适应方法动态调节每次迭代过程中使用的步长因子——即学习率。例如Adam优化器能够自动估计一阶矩估计和二阶矩估计,并据此更新各维度上的有效学习速率[^5]。 ```python from tensorflow.keras.optimizers import Adam optimizer = Adam(lr=0.001) model.compile(loss='mean_squared_error', optimizer=optimizer) ``` 上述Python脚本说明了怎样利用TensorFlow/Keras库实现基于Adam算法的最优化求解过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值