目标函数为二次式,约束条件为线性式的最优化问题称为二次规划。其一般形式为
{ minimize 1 2 x ⊤ H x + c ⊤ x s.t. A e q x − b e q = o A i q x − b i q ≥ o . \begin{cases} \text{minimize}\quad \frac{1}{2}\boldsymbol{x}^\top\boldsymbol{Hx}+\boldsymbol{c}^\top\boldsymbol{x}\\ \text{s.t.\ \ }\quad\quad\quad\boldsymbol{A}_{eq}\boldsymbol{x}-\boldsymbol{b}_{eq}=\boldsymbol{o}\\ \quad\quad\quad\quad\quad\boldsymbol{A}_{iq}\boldsymbol{x}-\boldsymbol{b}_{iq}\geq\boldsymbol{o} \end{cases}. ⎩
⎨
⎧minimize21x⊤Hx+c⊤xs.t. Aeqx−beq=oAiqx−biq≥o.
其中, H ∈ R n × n \boldsymbol{H}\in\text{R}^{n\times n} H∈Rn×n对称, c ∈ R n \boldsymbol{c}\in\text{R}^n c∈Rn, A e q ∈ R l × n \boldsymbol{A}_{eq}\in\text{R}^{l\times n} Aeq∈Rl×n, b e q ∈ R l \boldsymbol{b}_{eq}\in\text{R}^l beq∈Rl, A i q ∈ R m × n \boldsymbol{A}_{iq}\in\text{R}^{m\times n} Aiq∈Rm×n, b i q ∈ R m \boldsymbol{b}_{iq}\in\text{R}^m biq∈Rm。
仅含等式约束的二次规划形如
{ minimize 1 2 x ⊤ H x + c ⊤ x s.t. A x − b = o . ( 1 ) \begin{cases} \text{minimize}\quad \frac{1}{2}\boldsymbol{x}^\top\boldsymbol{Hx}+\boldsymbol{c}^\top\boldsymbol{x}\\ \text{s.t.\ \ }\quad\quad\quad\boldsymbol{Ax}-\boldsymbol{b}=\boldsymbol{o} \end{cases}.\quad\quad(1) {
minimize21x⊤Hx+c⊤xs.t. Ax−b=o.(1)
假定 H \boldsymbol{H} H对称正定, A ∈ R l × n \boldsymbol{A}\in\text{R}^{l\times n} A∈Rl×n,rank A = l \boldsymbol{A}=l A=l。正定二次式 1 2 x ⊤ H x + c ⊤ x \frac{1}{2}\boldsymbol{x}^\top\boldsymbol{Hx}+\boldsymbol{c}^\top\boldsymbol{x} 21x⊤Hx+c⊤x在凸集 Ω = { x ∣ A x − b = o } \Omega=\{\boldsymbol{x}|\boldsymbol{Ax}-\boldsymbol{b}=\boldsymbol{o}\} Ω={
x∣Ax−b=o}上有唯一满足必要条件的KKT点 ( x 0 λ 0 ) \begin{pmatrix}\boldsymbol{x}_0\\\boldsymbol{\lambda}_0\end{pmatrix} (x0
最优化方法Python计算:二次规划的拉格朗日算法
于 2024-09-04 16:11:19 首次发布