目录
步骤 3:上传 Amazon Personalize 的训练数据和配置
步骤 4:查看来自 Amazon Personalize 推理得出的细分
目标客户群体细分(segment)允许营销人员更好地针对特定的受众群体量身定制他们的营销活动。采用客户细分的企业可以创建并传达与特定客户群体产生共鸣的有针对性的营销信息。细分增加了客户与品牌互动的可能性,并减少了信息疲劳的潜在风险——即客户对收到太多与他们无关的信息而产生的反感。例如,如果您的企业想要开展一次关于正装的电子邮件活动,目标受众应该只包括穿正装的人。
本文介绍了一种使用 Amazon Personalize 生成高度个性化的 Amazon Pinpoint 客户细分(segment)的解决方案。使用 Amazon Pinpoint,您可以通过活动(campaign)和旅程(journey)向这些客户 segment 发送消息。
个性化 Pinpoint Segment
营销人员首先需要通过收集客户数据(如关键特征、交易数据和行为数据)来了解他们的客户。这些数据有助于形成买家人物画像、了解他们如何消费以及他们对接收什么类型的信息感兴趣。
您可以在 Amazon Pinpoint 中创建两种类型的客户细分:导入细分和动态细分。对于这两种类型的细分,您都需要执行客户数据分析并识别行为模式。在确定了细分特征后,您可以构建包含适当条件的动态细分。您可以在 Amazon Pinpoint 用户手册中了解有关动态和导入细分的更多信息。
在线销售产品和服务的企业可以从基于已知客户偏好(如产品类别、颜色或配送选项)的细分中获益。想要推广新产品或通知客户某个产品类别促销活动的营销人员可以使用这些细分来启动 Amazon Pinpoint 活动(campaign)和旅程(journey),从而提高客户完成交易的可能性。
构建有针对性的细分需要您获取历史客户交易数据,然后投入时间和资源进行分析。这里就可以使用机器学习技术节省时间并提高准确性。
Amazon Personalize 是一项全面托管的机器学习服务,无需任何先验机器学习知识即可运行。它提供了用于细分创建和产品推荐的现成模型(称为配方/recipes)。使用 Amazon Personalize USER_SEGMENTATION 配方,您可以基于产品 ID 或产品属性生成细分。
关于本解决方案
本方案引用了下面解决方案的架构设计:
上面解决方案以 nested stacks 的形式与主体应用一同被部署。其用于展示 Amazon Personalize 如何与 Amazon Pinpoint 集成来完成基于上下文的细分。
解决方案技术架构
本文解决方案架构图
一旦训练数据和训练配置被上传到 Personalize 数据 S3 存储桶(1),Amazon Step Function 状态机就会被执行(2)。该状态机实现了一个训练工作流来为 Amazon Personalize 提供所需的所有资源。它基于 Item-Attribute-Affinity 配方训练推荐模型(3a)。一旦该 Amazon Personalize 方案创建完成,工作流就会创建一个批量细分作业来获取用户细分(3b)。本例中,作业配置专注于生成对动作类型电影感兴趣的用户细分。
当批量细分作业完成时,结果会被上传到 Amazon S3(3c)。训练工作流状态机将在自定义 Event Bus 上发布 Amazon Personalize 状态更改(4)事件。Amazon EventBridge 规则会监听描述批量细分作业已完成的事件(5)。一旦此事件被发布到 Event Bus 总线上,批量细分后处理工作流就会作为 Amazon Step Function 状态机执行(6)。该工作流读取并转换来自 Amazon Personalize 的细分作业输出(7),将其转换为可以作为静态细分导入 Amazon Pinpoint 的 CSV 文件(8