【Pytorch】测试单张图片(调用transforms)

Pytorch测试单张图片(调用transforms)

import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import tqdm
import numpy as np
import argparse
import os.path as osp
import os
# from pytorch_toolbelt.inference import tta
import shutil
import glob
from network import Resnet18, Resnet34, Resnet50, SEnet154, Resnet101, SEResNext50
from PIL import Image
import torchvision.transforms as transforms
from data_process.hp_dataset import HPDataset

net = Resnet50(n_classes=5) 
net.eval()
net.load_state_dict(torch.load(r'/src/model-1021-v5.pth'))
net = net.cuda()

img = Image.open(r"/src/img.tif")
img = img.resize((256, 256), Image.BILINEAR)
img = np.array(img)

to_tensor = transforms.Compose([
                transforms.ToTensor(),
                transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))])
img = to_tensor(img)
img = torch.unsqueeze(img, 0) #给最高位添加一个维度,也就是batchsize的大小

img1 = img.cuda()
outputs = net(img1)
outputs = F.softmax(outputs, dim=1)
predicted = torch.max(outputs, dim=1)[1].cpu().item()
outputs = outputs.squeeze(0)
# predicted = torch.max(outputs, dim=1)[1].cpu().numpy()
confidence=outputs[predicted].item()
confidence=round(confidence, 3)
print(confidence)

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值