tensorflow点滴(1)

tf.nn.max_pool中padding的2种形式'SAME','VALID'的差别
import tensorflow as tf
import numpy as np

a= np.random.randint(9,size=(1,9,9,1))
print(np.squeeze(a))
cons = tf.constant(value=a,dtype=tf.float32,shape=(1,9,9,1))
X = tf.nn.max_pool(cons, [1,2,2,1], [1,2,2,1], padding='SAME')
Y= tf.nn.max_pool(cons, [1,2,2,1], [1,2,2,1], padding='VALID')
with tf.Session() as sess:
    print('X is following:')
    print(np.squeeze(np.array(sess.run(X))))
    print('Y is following:')
    print(np.squeeze(np.array(sess.run(Y))))

输出结果:
[[4 2 6 1 6 1 2 7 2]
 [3 1 2 0 5 3 2 2 6]
 [4 4 2 4 5 8 8 4 6]
 [4 6 6 8 8 6 0 3 0]
 [4 0 8 1 8 3 8 8 0]
 [0 5 2 6 4 3 7 8 5]
 [6 6 6 4 5 6 0 8 2]
 [0 1 1 7 4 7 5 3 3]
 [6 0 1 4 5 8 3 5 7]]
X is following:
[[ 4.  6.  6.  7.  6.]
 [ 6.  8.  8.  8.  6.]
 [ 5.  8.  8.  8.  5.]
 [ 6.  7.  7.  8.  3.]
 [ 6.  4.  8.  5.  7.]]
Y is following:
[[ 4.  6.  6.  7.]
 [ 6.  8.  8.  8.]
 [ 5.  8.  8.  8.]
 [ 6.  7.  7.  8.]]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值