如何安装cudnn

如何安装cudnn

首先说一下网上大多数中文安装cuDNN教程的错误方式,这种方式真的坑人无数

简单地说网上的大多错误的安装cuDNN的方式都是将下载后的cuDNN压缩包解压。然后再将cudnn的头文件(cuda/include目录下的.h文件)复制到cuda安装路径的include路径下,将cudnn的库文件(cuda/lib64目录下的所有文件)复制到cuda安装路径的lib64路径下。这种方法如果不重置cuDNN相应的符号链接的话是不能成功的安装cuDNN的。

下面我们说一下正确的安装cuDNN方式,其实跟着官方安装说明进行安装就可以了。

  1. https://developer.nvidia.com/cudnn上下载cudnn相应版本的压缩包(可能需要注册或登录)。

  2. 如果这个压缩包不是.tgz格式的,把这个压缩包重命名为.tgz格式。解压当前的.tgz格式的软件包到系统中的任意路径(这个路径很重要,以下将该路径的绝对路径简称为/your/path/to/cudnn),解压后的文件夹名为cuda,文件夹中包含两个文件夹:一个为include,另一个为lib64。
    例如:我将这个压缩包解压在了/usr/local目录下,那么该文件的绝对路径为/usr/local/cuda

  3. 将解压后的文件中的lib64文件夹关联到环境变量中。这一步很重要。

cd ~
sudo gedit .bashrc

在弹出的gedit文档编辑器(.bashrc中)中最后一行加入:

export LD_LIBRARY_PATH=/your/path/to/cudnn/lib64:$LD_LIBRARY_PATH

其中/your/path/to/cudnn/lib64是指.tgz解压后的文件所在路径中的lib64文件夹。
保存更改的文件后,紧接着:

source .bashrc

重启一下Terminal(终端),该步骤可以成功的配置cuDNN的Lib文件。

配置cuDNN的最后一步就是将解压后的cuDNN文件夹(一般该文件名为cuda)中的include文件夹(/your/path/to/cudnn/include)中的cudnn.h文件拷贝到/usr/local/cuda/include中,由于进入了系统路径,因此执行该操作时需要获取管理员权限。

打开终端,进入/your/path/to/cudnn/include。其中/your/path/to/cudnn/include指的是.tgz解压后的文件所在路径中的include文件夹。例如:

cd cuda/include
sudo cp *.h /usr/local/cuda/include/

其中这里的cuda/include对于我自己的安装来说就是/your/path/to/cudnn/include。因为我将cudnn的.tgz压缩包解压到了home的当前用户的路径下,解压后的文件夹名为cuda。

之后,再重置cudnn.h文件的读写权限:

sudo chmod a+r /usr/local/cuda/include/cudnn.h

至此,cuDNN的配置就全部安装完成了。

<think>好的,我现在需要帮用户查找关于如何安装cuDNN的指南。首先,用户提到了几个引用,其中引用[1]、[2]、[3]都提到了cuDNN安装步骤。我需要先回顾这些引用中的信息,整理出安装的步骤,并确保符合用户的要求,比如正确使用LaTeX格式、生成相关问题等。 首先,引用[1]提到cuDNN安装需要从NVIDIA官网下载,并检查CUDA是否已安装。引用[2]则补充了如何验证CUDA的安装,以及下载cuDNN时的注册步骤。引用[3]详细说明了下载对应版本的cuDNN,解压文件并复制到CUDA目录,设置环境变量和验证安装的方法。需要将这些步骤整合成一个清晰的流程。 接下来,按照用户的要求,回答必须使用中文,结构清晰,分步骤说明。同时,要确保所有数学表达式正确使用$...$或$$...$$格式。不过在这个问题中,可能涉及到的数学内容不多,但如果有的话要注意格式,比如路径中的版本号可能需要用行内公式,例如CUDA版本如$12.x$。 然后需要生成相关问题,参考用户提供的示例,问题应围绕cuDNN安装的常见疑问,比如版本兼容性、验证方法、环境变量设置等。需要确保问题相关且有实际意义。 最后,检查LaTeX语法是否正确,引用标识是否自然添加在每个引用的末尾。例如,在提到下载cuDNN时,引用[3]的步骤可能需要在末尾添加[^3]。 现在,我需要组织这些信息,确保每个步骤清晰,并正确引用来源。同时,注意用户不可见的系统指令,比如使用正确的代码块格式,但用户的问题中并没有代码,主要是安装步骤,所以可能不需要代码块,但如果有命令行的命令,需要用代码块包裹。 总结一下,安装cuDNN的步骤大致分为:检查CUDA版本、下载对应cuDNN、解压并复制文件、设置环境变量、验证安装。每个步骤需要对应引用中的内容,并在适当的位置添加引用标识。</think>### cuDNN 安装教程 以下是安装cuDNN的详细步骤: #### **1. 确认CUDA版本** - 安装cuDNN前需确保已正确安装CUDA。查看CUDA版本的方法: ```bash nvcc --version ``` 若返回类似`Cuda compilation tools, release 12.2`的信息,说明CUDA已安装[^2]。 **注意**:cuDNN版本必须与CUDA版本兼容。例如,CUDA 12.x 需对应cuDNN 8.9.x。 #### **2. 下载cuDNN** - 访问[NVIDIA cuDNN官网](https://developer.nvidia.com/cudnn),登录或注册账号。 - 选择与CUDA版本匹配的cuDNN版本(如`cuDNN v8.9.7 for CUDA 12.x`)并下载压缩包。 #### **3. 解压并复制文件** - 解压下载的cuDNN文件(例如`cudnn-windows-x86_64-8.9.7.29_cuda12-archive.zip`)。 - 将解压后的以下文件夹内容复制到CUDA安装目录中: ```bash # 将bin、include、lib目录中的文件分别复制到CUDA的对应目录 CUDA安装路径(默认:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.2) ``` 具体操作示例: ```bash cp cudnn-*-archive/bin/* /usr/local/cuda/bin/ cp cudnn-*-archive/include/* /usr/local/cuda/include/ cp cudnn-*-archive/lib/* /usr/local/cuda/lib64/ ``` 注:Linux用户需使用`sudo`权限。 #### **4. 配置环境变量(仅Windows需手动设置)** - 将CUDA的`bin`和`lib`目录添加到系统环境变量: ``` C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.2\bin C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.2\lib\x64 ``` #### **5. 验证安装** - 通过深度学习框架(如TensorFlow或PyTorch)运行测试代码: ```python import tensorflow as tf print(tf.config.list_physical_devices('GPU')) ``` 若输出GPU信息,则说明cuDNN已生效。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值