kaggle比赛中的private leaderboard和public leaderboard的区别

特别说明一下Kaggle 在计算得分的时候,有Public Leaderboard (LB)和 Private LB 之分。具体而言,参赛选手提交整个测试集的预测结果,Kaggle 使用测试集的一部分计算得分和排名,实时显示在 Public LB上,用于给选手提供及时的反馈和动态展示比赛的进行情况;测试集的剩余部分用于计算参赛选手的最终得分和排名,此即为 Private LB,在比赛结束后会揭晓。用于计算 Public LB 和 Private LB 的数据有不同的划分方式,具体视比赛和数据的类型而定,一般有随机划分,按时间划分或者按一定规则划分。大家可以合理利用Public Leaderboard的排名和反馈来适当调整自己的策略,但是不要太过依赖Public Leaderboard,有些时候它的数据分布和Private Leaderboard会有差异,不要在Public Leaderboard上过拟合哦,还是好好利用你的validation set吧,以便得到更好的泛化能力。

感谢Chi Yu's Blog的解释:

我提交过,已经搞懂了,意思就是:
kaggle给的测试集中包含AB两部分,
但是不告诉你哪部分是A,哪部分是B.
要求你按次序提交这个测试集每条数据的预测结果.
提交后,因为你是按次序提交的,所以kaggle服务器自己知道哪些序号对应的数据结果传给private LB,
哪些传给public LB.
比赛途中,只让看public LB,为了防止参赛者预测结果不具备普适性,参赛结果以private LB为准.

 

转自:https://blog.csdn.net/pearl8899/article/details/82145480

Kaggle上提交比赛结果是一个相对简单的过程,但需要注意一些细节以确保你的提交被正确评分。以下是一个基本的步骤指南: 1. **创建账户并加入比赛**:首先,你需要在Kaggle网站上注册一个账户,并加入你想要参加的比赛。 2. **下载数据集**:在比赛页面,你可以找到提供的数据集。下载这些数据并在本地进行分析建模。 3. **开发模型**:使用你喜欢的编程语言工具(如Python的pandas、scikit-learn、TensorFlow等)来开发你的模型。 4. **生成提交文件**:大多数比赛要求你提交一个CSV文件,其中包含你对测试集的预测。确保你的提交文件符合比赛要求的格式内容。通常,比赛页面会提供一个示例提交文件,你可以参考这个文件来生成你的提交文件。 5. **提交结果**:在比赛页面上,找到“Submit Predictions”或类似的按钮,点击后上传你的提交文件。系统会自动验证你的提交文件是否符合要求。 6. **查看结果**:提交后,Kaggle会使用公共排行榜(Public Leaderboard私人排行榜(Private Leaderboard)来评估你的模型。公共排行榜是基于部分测试数据,而私人排行榜是在比赛结束后才公布,基于全部测试数据。 7. **迭代改进**:根据反馈结果,迭代改进你的模型,直到你对结果满意为止。 以下是一个简单的Python示例,展示了如何生成一个符合要求的提交文件: ```python import pandas as pd # 假设你已经有了预测结果 predictions = [0, 1, 0, 1, 1] # 创建一个DataFrame submission = pd.DataFrame({ 'Id': range(1, len(predictions) + 1), 'Category': predictions }) # 保存为CSV文件 submission.to_csv('submission.csv', index=False) ```
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值