在NVIDIA Jetson AGX Orin中使用jetson-ffmpeg调用硬件编解码加速处理

目录

1 build and install library

1.1 报错 Cannot found LIB_NVBUF

2 patch ffmpeg and build

参考文献:


build and install library

git clone https://github.com/Keylost/jetson-ffmpeg.git
cd jetson-ffmpeg
mkdir build
cd build
cmake ..
make
sudo make install
sudo ldconfig

安装位置为默认位置

make install
[ 50%] Built target nvmpi_static
[100%] Built target nvmpi
Install the project...
-- Install configuration: "Release"
-- Installing: /usr/local/lib/libnvmpi.so.1.0.0
-- Installing: /usr/local/lib/libnvmpi.so.1
-- Set runtime path of "/usr/local/lib/libnvmpi.so.1.0.0" to ""
-- Installing: /usr/local/lib/libnvmpi.so
-- Installing: /usr/local/include/nvmpi.h
-- Installing: /usr/local/lib/
NVIDIA Jetson AGX Orin在边缘计算中的优势主要体现在其先进的硬件架构和专为AI任务优化的软件支持。首先,这款模块搭载了基于Ampere架构的GPU,第三代Tensor Cores能够支持稀疏运算,这不仅增强了其深度学习性能,还提高了能效比。此外,DLA(Deep Learning Accelerator)的加入为那些需要低功耗和高性能推理的神经网络提供了额外的加速。 参考资源链接:[NVIDIA Jetson AGX Orin:机器人与边缘AI的飞跃](https://wenku.csdn.net/doc/79ncr7dmtf?spm=1055.2569.3001.10343) 在CPU方面,Jetson AGX Orin配备了强大的多核处理器,这使得复杂的控制逻辑和多任务处理成为可能,从而保证了边缘计算场景中系统能够稳定高效地运行。其高速内存和大容量存储设计,不仅支持大规模模型的快速加载和执行,还能有效地处理大量的数据输入输出。 视频编解码器和PVA、VIC的集成,则进一步强化了实时视频分析的能力,这对于自动驾驶机器等视觉密集型应用尤其重要。NVIDIAJetson AGX Orin提供了完整的软件栈,包括CUDA、cuDNN、TensorRT等,这些都极大地简化了AI应用的开发流程,并允许开发者轻松构建和部署复杂的AI应用。 最后,Jetson AGX Orin的多种功率模式设计使得开发者可以根据实际需求,灵活调整系统性能与能耗之间的平衡,这对于功耗受限的边缘设备来说至关重要。综上所述,Jetson AGX Orin通过硬件和软件的紧密结合,为边缘计算提供了强大的支持,使得在AI任务处理上具备了显著优势。 参考资源链接:[NVIDIA Jetson AGX Orin:机器人与边缘AI的飞跃](https://wenku.csdn.net/doc/79ncr7dmtf?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陈 洪 伟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值