什么是经验分布

经验分布是概率统计中的一个基本概念,用于描述从有限样本数据中估计的概率分布。它是一个基于数据的分布,用来近似未知的真实分布(通常称为“总体分布”)。经验分布直接反映了样本中事件发生的频率。


1. 定义

对于一个样本数据集 { x 1 , x 2 , … , x N } \{x_1, x_2, \dots, x_N\} {x1,x2,,xN},经验分布是基于数据统计得到的分布函数,用来估计总体分布。

经验分布函数 (Empirical Distribution Function, EDF)

经验分布函数定义为:
F emp ( x ) = 1 N ∑ i = 1 N 1 { x i ≤ x } F_{\text{emp}}(x) = \frac{1}{N} \sum_{i=1}^N \mathbf{1}_{\{x_i \leq x\}} Femp(x)=N1i=1N1{xix}

  • 含义

    • F emp ( x ) F_{\text{emp}}(x) Femp(x) 表示样本数据中小于等于 x x x 的样本比例。
    • 1 { x i ≤ x } \mathbf{1}_{\{x_i \leq x\}} 1{xix} 是指示函数,若 x i ≤ x x_i \leq x xix 则取值为 1,否则为 0。
  • 性质

    1. F emp ( x ) F_{\text{emp}}(x) Femp(x) 是一个单调非减的阶梯函数;
    2. 样本的每个取值对应一个阶梯,阶梯的高度为 1 N \frac{1}{N} N1

2. 特点

  1. 基于数据

    • 经验分布直接从样本中计算得到,无需假设数据分布的形式。
    • 它是一种非参数分布估计方法。
  2. 离散性

    • 经验分布函数是阶梯函数,因为它仅在样本点发生变化。
  3. 近似真实分布

    • 当样本量 N → ∞ N \to \infty N 时,经验分布 F emp ( x ) F_{\text{emp}}(x) Femp(x) 会逐渐收敛到真实的分布函数 F ( x ) F(x) F(x)

3. 计算经验分布的步骤

  1. 收集样本数据
    • 例如:样本 { 1.2 , 2.5 , 2.5 , 3.1 , 4.0 } \{1.2, 2.5, 2.5, 3.1, 4.0\} {1.2,2.5,2.5,3.1,4.0}
  2. 按大小排序样本
    • 排序后 { 1.2 , 2.5 , 2.5 , 3.1 , 4.0 } \{1.2, 2.5, 2.5, 3.1, 4.0\} {1.2,2.5,2.5,3.1,4.0}
  3. 计算经验分布函数
    • 对每个样本点 x x x,计算小于等于 x x x 的样本比例。
示例

样本数据: { 1 , 2 , 2 , 3 } \{1, 2, 2, 3\} {1,2,2,3}(总共 4 个数据点, N = 4 N = 4 N=4)。

经验分布函数 F emp ( x ) F_{\text{emp}}(x) Femp(x)

  • F emp ( x ) = 0 ,   x < 1 F_{\text{emp}}(x) = 0, \, x < 1 Femp(x)=0,x<1
  • F emp ( x ) = 1 4 ,   1 ≤ x < 2 F_{\text{emp}}(x) = \frac{1}{4}, \, 1 \leq x < 2 Femp(x)=41,1x<2
  • F emp ( x ) = 3 4 ,   2 ≤ x < 3 F_{\text{emp}}(x) = \frac{3}{4}, \, 2 \leq x < 3 Femp(x)=43,2x<3
  • F emp ( x ) = 1 ,   x ≥ 3 F_{\text{emp}}(x) = 1, \, x \geq 3 Femp(x)=1,x3

4. 经验分布与真实分布的关系

  • 真实分布 (Population Distribution)
    F ( x ) F(x) F(x) 是总体分布函数,表示随机变量 X X X 小于等于 x x x 的概率。
    F ( x ) = P ( X ≤ x ) F(x) = P(X \leq x) F(x)=P(Xx)

  • 经验分布 (Empirical Distribution)
    F emp ( x ) F_{\text{emp}}(x) Femp(x) 是样本估计的分布函数,用有限样本估计真实分布。
    F emp ( x ) = 样本中满足  X ≤ x  的个数 样本总数 F_{\text{emp}}(x) = \frac{\text{样本中满足 } X \leq x \text{ 的个数}}{\text{样本总数}} Femp(x)=样本总数样本中满足 Xx 的个数

收敛性
当样本量 N → ∞ N \to \infty N 时,经验分布 F emp ( x ) F_{\text{emp}}(x) Femp(x) 会逐渐收敛到真实分布 F ( x ) F(x) F(x)。这种收敛由格利文科-坎特利定理保证。


5. 经验分布的应用

  1. 统计推断

    • 用于估计真实分布的形式,尤其在不知道分布形式时提供非参数估计。
  2. 机器学习

    • 在模型训练中,经验分布可以用于计算样本权重或评估模型表现。
  3. 可视化

    • 经验分布函数可以绘制成图形,帮助理解数据分布。
  4. 假设检验

    • 经验分布函数可以用于检验数据是否符合某种假设分布,例如 Kolmogorov-Smirnov 检验。

6. 示例:从数据中构造经验分布

假设我们有以下 10 条样本数据(表示某次实验的观测值):
{ 1.5 , 2.0 , 2.5 , 3.0 , 3.0 , 3.5 , 4.0 , 4.0 , 4.5 , 5.0 } \{1.5, 2.0, 2.5, 3.0, 3.0, 3.5, 4.0, 4.0, 4.5, 5.0\} {1.5,2.0,2.5,3.0,3.0,3.5,4.0,4.0,4.5,5.0}

步骤 1:排序数据

{ 1.5 , 2.0 , 2.5 , 3.0 , 3.0 , 3.5 , 4.0 , 4.0 , 4.5 , 5.0 } \{1.5, 2.0, 2.5, 3.0, 3.0, 3.5, 4.0, 4.0, 4.5, 5.0\} {1.5,2.0,2.5,3.0,3.0,3.5,4.0,4.0,4.5,5.0}

步骤 2:计算每个点的经验分布值

构造经验分布函数 F emp ( x ) F_{\text{emp}}(x) Femp(x)

  • 对于 x < 1.5 x < 1.5 x<1.5 F emp ( x ) = 0 F_{\text{emp}}(x) = 0 Femp(x)=0
  • 对于 1.5 ≤ x < 2.0 1.5 \leq x < 2.0 1.5x<2.0 F emp ( x ) = 1 10 = 0.1 F_{\text{emp}}(x) = \frac{1}{10} = 0.1 Femp(x)=101=0.1
  • 对于 2.0 ≤ x < 2.5 2.0 \leq x < 2.5 2.0x<2.5 F emp ( x ) = 2 10 = 0.2 F_{\text{emp}}(x) = \frac{2}{10} = 0.2 Femp(x)=102=0.2
  • 对于 2.5 ≤ x < 3.0 2.5 \leq x < 3.0 2.5x<3.0 F emp ( x ) = 3 10 = 0.3 F_{\text{emp}}(x) = \frac{3}{10} = 0.3 Femp(x)=103=0.3
  • 对于 3.0 ≤ x < 3.5 3.0 \leq x < 3.5 3.0x<3.5 F emp ( x ) = 5 10 = 0.5 F_{\text{emp}}(x) = \frac{5}{10} = 0.5 Femp(x)=105=0.5
  • 对于 3.5 ≤ x < 4.0 3.5 \leq x < 4.0 3.5x<4.0 F emp ( x ) = 6 10 = 0.6 F_{\text{emp}}(x) = \frac{6}{10} = 0.6 Femp(x)=106=0.6
  • 对于 4.0 ≤ x < 4.5 4.0 \leq x < 4.5 4.0x<4.5 F emp ( x ) = 8 10 = 0.8 F_{\text{emp}}(x) = \frac{8}{10} = 0.8 Femp(x)=108=0.8
  • 对于 4.5 ≤ x < 5.0 4.5 \leq x < 5.0 4.5x<5.0 F emp ( x ) = 9 10 = 0.9 F_{\text{emp}}(x) = \frac{9}{10} = 0.9 Femp(x)=109=0.9
  • 对于 x ≥ 5.0 x \geq 5.0 x5.0 F emp ( x ) = 1.0 F_{\text{emp}}(x) = 1.0 Femp(x)=1.0
步骤 3:绘制经验分布函数

经验分布函数是阶梯状的非减函数,可以用图像直观表示数据分布。


总结

经验分布是一种基于样本数据的概率分布,反映了样本中事件的频率,用来近似真实分布。它是非参数估计的重要工具,在统计推断、可视化和假设检验中有广泛应用。

<think>好的,我现在要解决用户的问题:如何在SAS中创建经验分布直方图,并需要示例代码和教程。首先,我需要回忆一下SAS的绘图功能,特别是直方图的绘制方法。用户提到了“经验分布直方图”,这可能是指展示数据分布的直方图,可能需要结合经验分布函数或核密度估计。 首先,我记得SAS中常用的绘图过程步有PROC SGPLOT和PROC UNIVARIATE。PROC SGPLOT比较灵活,可以绘制多种图形,而PROC UNIVARIATE在分析变量分布时会自动生成直方图,可能更直接。但用户可能需要更多的自定义选项,所以需要考虑这两种方法的差异。 接下来,我需要确定用户的具体需求。经验分布直方图可能是指简单的频率直方图,或者是否要叠加核密度曲线或经验分布函数曲线。比如,PROC UNIVARIATE中的HISTOGRAM语句可以配合KERNEL选项添加核密度曲线,这可能符合经验分布的需求。 然后,我需要查找相关的示例代码。根据之前的知识,使用PROC SGPLOT的HISTOGRAM语句可以创建直方图,同时使用DENSITY语句添加密度曲线。而PROC UNIVARIATE则可以通过HISTOGRAM来生成直方图,并指定分布拟合或核密度估计。 还需要考虑数据准备部分。用户可能需要先生成一个数据集,比如使用DATA步生成模拟数据,或者使用现有数据集。例如,使用正态分布随机数来演示。 另外,用户可能需要一些参数调整,比如直方图的箱数(bins)、颜色、标题等。在PROC SGPLOT中,可以使用BINWIDTH=或NBINS=选项来调整箱数,而PROC UNIVARIATE中可能需要使用MIDPOINTS=选项。 还需要注意SAS的版本是否影响语法。比如,较新的SAS版本可能支持更多的图形选项,但基本的PROC SGPLOT应该通用。 可能的步骤是: 1. 使用DATA步生成或导入数据。 2. 使用PROC UNIVARIATE生成直方图,并叠加核密度曲线。 3. 使用PROC SGPLOT自定义直方图,并添加密度曲线。 4. 调整图形样式,如标题、轴标签、颜色等。 需要检查示例代码的正确性,确保语法正确,比如PROC UNIVARIATE中HISTOGRAM的正确用法,以及PROC SGPLOT中DENSITY语句的参数是否正确。 可能遇到的问题包括用户数据中的缺失值,或者如何调整直方图的箱数。这时候需要建议使用选项如NBINS=或BINWIDTH=来调整。 此外,引用相关的参考资料,比如用户提供的引用[1]中提到用户以前对SAS代码一知半解,现在需要更清晰的解释,所以回答中需要详细注释代码,说明每个步骤的作用。引用[5]提到直方图的绘制,可能需要参考相关图形输出的方法。 最后,生成相关问题,可能涉及如何调整图形样式、如何保存图形(参考引用[2]和[3]中的图形导出和交互式图表),或者如何进行分布拟合检验等。</think>在SAS中创建经验分布直方图可通过`PROC SGPLOT`或`PROC UNIVARIATE`实现。以下是分步说明和示例代码: --- ### 方法1:使用`PROC SGPLOT`(灵活自定义) ```sas /* 步骤1:生成示例数据 */ data sample_data; do i = 1 to 1000; x = rand("Normal", 0, 1); /* 生成均值为0、标准差1的正态分布数据 */ output; end; run; /* 步骤2:绘制直方图并叠加密度曲线 */ proc sgplot data=sample_data; histogram x / binwidth=0.5 fillattrs=(color=lightblue) /* 设置箱宽和颜色 */ transparency=0.5 name="Histogram"; /* 添加透明度 */ density x / type=kernel lineattrs=(color=red thickness=2) /* 叠加核密度曲线 */ legendlabel="Kernel Density"; keylegend "Histogram" "Kernel Density"; /* 添加图例 */ title "经验分布直方图(含核密度估计)"; /* 设置标题 */ run; ``` --- ### 方法2:使用`PROC UNIVARIATE`(自动分析) ```sas proc univariate data=sample_data; var x; histogram x / kernel(color=red) /* 自动添加核密度曲线 */ midpoints=-4 to 4 by 0.5 /* 手动指定分箱中点 */ odstitle="经验分布直方图"; /* 设置标题 */ run; ``` --- ### 关键参数说明 1. **分箱控制** - `binwidth=0.5`:直方图箱宽 - `midpoints=-4 to 4 by 0.5`:手动指定分箱中点范围 2. **图形增强** - `kernel`:叠加核密度曲线(支持`type=normal`或`type=kernel`) - `fillattrs`/`lineattrs`:调整颜色、透明度等属性 3. **输出优化** - 使用`ODS GRAPHICS`调整输出分辨率: ```sas ods graphics / width=800px height=600px imagemap; ``` --- ### 图形保存与导出 参考引用[2],可通过以下方式保存图形: 1. **直接导出为文件** ```sas ods html file="C:/path/to/output.html"; proc sgplot ...; run; ods html close; ``` 2. **使用`ODS PDF`批量保存** ```sas ods pdf file="output.pdf"; proc sgplot ...; run; ods pdf close; ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值