【Seaborn】sns.displot() 函数: 数据分布可视化(直方图、核密度估计图、ECDF图)

sns.displot() —— 分布可视化(Distribution Plot)

seaborn.displot()distribution plot)是用于 数据分布可视化 的函数,支持 直方图(histogram)、密度图(KDE)、ECDF图 等。


1. 语法

import seaborn as sns

sns.displot(data=None, x=None, kind="hist", bins=10, kde=False, hue=None, rug=False)

主要参数

参数作用
dataDataFrame 数据集
x需要可视化的数值变量
kind选择图表类型:"hist"(默认直方图)、"kde"(密度曲线)、"ecdf"(累计分布)
bins直方图的分组数(默认 10
kde是否绘制密度曲线
hue按类别分类
rug是否添加散点(数据分布)

2. 基本用法

2.1 直方图

import seaborn as sns
import matplotlib.pyplot as plt

# 载入数据
data = sns.load_dataset("penguins")

# 绘制直方图
sns.displot(data=data, x="flipper_length_mm", bins=20)

plt.title("Flipper Length Distribution")
plt.show()

📌 说明

  • x="flipper_length_mm" 选择需要可视化的数值变量。
  • bins=20 指定 20 个区间
    在这里插入图片描述

2.2 直方图 + KDE 曲线

sns.displot(data=data, x="flipper_length_mm", bins=20, kde=True)

plt.show()

📌 作用

  • kde=True 添加核密度估计(KDE),用于平滑显示分布。
    在这里插入图片描述

3. KDE 密度曲线

3.1 纯 KDE 图

sns.displot(data=data, x="flipper_length_mm", kind="kde")

plt.show()

📌 说明

  • kind="kde" 仅显示 核密度曲线(适用于 平滑连续数据)。
    在这里插入图片描述

4. 分类数据可视化

4.1 按类别显示(hue 参数)

sns.displot(data=data, x="flipper_length_mm", hue="species", bins=20, kde=True)

plt.show()

📌 说明

  • hue="species"species 物种分类,不同类别不同颜色
    在这里插入图片描述

5. 其他分布类型

5.1 ecdf(累积分布)

sns.displot(data=data, x="flipper_length_mm", kind="ecdf")

plt.show()

📌 说明

  • kind="ecdf" 显示 累计概率密度函数(ECDF)
    在这里插入图片描述

6. sns.displot() vs sns.histplot()

sns.displot()sns.histplot()
返回对象FacetGrid(适用于子图)AxesSubplot
适用于多个类别对比单图分析
hue 分类✅ 支持✅ 支持
sns.histplot(data=data, x="flipper_length_mm", bins=20, kde=True)
plt.show()

📌 推荐

  • 单个变量分析histplot()
  • 多类别、多个图displot()
    在这里插入图片描述

7. 总结

sns.displot() 适用于 数据分布可视化,支持 直方图、KDE、ECDF
常见参数

  • bins 控制分组数,kde=True 添加密度曲线。
  • hue 分类数据kind="kde" 仅绘制密度图
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值