分位数Granger因果检验实现原理

各变量含义

待估计方程:
Q Y t [ τ ∣ Z t − 1 ] = a ( τ ) + Y t − 1 , p ′ α ( τ ) + X t − 1 , q ′ β ( τ ) = Z t − 1 ′ θ ( τ ) Q_{Y_{t}}\left[\tau | Z_{t-1}\right]=a(\tau)+Y_{t-1, p}^{\prime} \alpha(\tau)+X_{t-1, q}^{\prime} \beta(\tau)=Z_{t-1}^{\prime} \theta(\tau) QYt[τZt1]=a(τ)+Yt1,pα(τ)+Xt1,qβ(τ)=Zt1θ(τ)
其中, a ( τ ) a(\tau) a(τ)为截距项, α ( τ ) \alpha(\tau) α(τ) β ( τ ) \beta(\tau) β(τ)为回归系数列向量; θ ( τ ) \theta(\tau) θ(τ)为回归系数向量,
a ( τ ) = [ a l p h a ( τ ) , α ( τ ) ′ , β ( τ ) ′ ] ′ ​ a(\tau)=\left[alpha(\tau), \alpha(\tau)^{\prime}, \beta(\tau)^{\prime}\right]^{\prime}​ a(τ)=[alpha(τ),α(τ),β(τ)]

Y t − 1 , p ′ = ( Y t − 1 , ⋯   , Y t − p ) \quad Y_{t-1, p}^{\prime}=\left(Y_{t-1}, \cdots, Y_{t-p}\right) Yt1,p=(Yt1,,Ytp)

X t − 1 , q ′ = ( X t − 1 , ⋯   , X t − q ) \quad X_{t-1, q}^{\prime}=\left(X_{t-1}, \cdots, X_{t-q}\right) Xt1,q=(Xt1,,Xtq)

Z t − 1 ′ = ( Y t − 1 , p ′ , X t − 1 , q ′ ) Z_{t-1}^{\prime}=\left(Y_{t-1, p}^{\prime}, X_{t-1, q}^{\prime}\right) Zt1=(Yt1,p,Xt1,q)

Wald检验量为: W T ( τ ) = T β ^ ( τ ) ′ Σ ^ ( τ ) − 1 β ^ ( τ ) τ ( 1 − τ ) \mathrm{W}_{T}(\tau)=T \frac{\hat{\beta}(\tau)^{\prime} \hat{\Sigma}(\tau)^{-1} \hat{\beta}(\tau)}{\tau(1-\tau)} WT(τ)=Tτ(1τ)β^(τ)Σ^(τ)1β^(τ)

Sup-Wald检验量为: sup ⁡ W T = sup ⁡ i = 1 , ⋯   , n W T ( τ i ) \sup W_{T}=\sup _{i=1, \cdots, n} W_{T\left(\tau_{i}\right)} supWT=i=1,,nsupWT(τi)

Python在进行分位数回归时,方差默认为核估计

分位数方差核密度估计原理(基于Eviews帮助文件)

独立但不同分布假设下的参数渐近分布

当分位数密度函数独立但不同分布即与解释变量X相关时, T ( β ^ ( τ ) − β ( τ ) ) \sqrt{T}(\hat{\beta}(\tau)-\beta(\tau)) T (β^(τ)β(τ))的渐近分布服从Huber sandwich形式:

T ( β ^ ( τ ) − β ( τ ) ) ∼ N ( 0 , τ ( 1 − τ ) H ( τ ) − 1 J H ( τ ) − 1 ) ​ \sqrt{T}\left(\hat{\beta}_{(\tau)}-\beta_{(\tau)}\right){\sim} N\left(0, \tau(1-\tau) H(\tau)^{-1} J H(\tau)^{-1}\right)​ T (β^(τ)β(τ))N(0,τ(1τ)H(τ)1JH(τ)1)
其中 T T T为样本容量, τ \tau τ为分位点, β ^ ( τ ) \hat{\beta}_{(\tau)} β^(τ) τ \tau τ分位点下回归系数估计量, N N N为正态分布, X i X_{i} Xi为解释变量矩阵;
J = lim ⁡ n → ∞ ( ∑ i X i X i ′ T ) = lim ⁡ n → ∞ ( X X T ) ​ J=\lim _{n \rightarrow \infty}\left(\sum_{i} \frac{X_{i} X_{i}^{\prime}}{T}\right)=\lim _{n \rightarrow \infty}\left(\frac{X X}{T}\right)​ J=nlim(iTXiXi)=nlim(TXX)

H ( τ ) = lim ⁡ T → ∞ ( ∑ i X i X i ′ f i ( q i ( τ ) ) / T ) H(\tau)=\lim _{T \rightarrow \infty}\left(\sum_{i} X_{i} X_{i}^{\prime} f_{i}\left(q_{i}(\tau)\right) / T\right) H(τ)=Tlim(iXiXifi(qi(τ))/T)

f i ( q i ( τ ) ) f_{i}\left(q_{i}(\tau)\right) fi(qi(τ))是个体 i i i τ \tau τ分位点上的条件密度函数。使用核密度进行估计:
H ^ ( τ ) = ( 1 / T ) ∑ i = 1 T c T − 1 K ( u ^ ( τ ) t / c T ) X i X i ′ \hat{H}(\tau)=(1 / T) \sum_{i=1}^{T} c_{T}^{-1} K\left(\hat{u}_{(\tau) t} / c_{T}\right) X_{i} X_{i}^{\prime} H^(τ)=(1/T)i=1TcT1K(u^(τ)t/cT)XiXi
其中 u ^ ( τ ) i \hat{\mathcal{u}}_{(\tau) i} u^(τ)i表示分位数回归的残差; c T c_T cT为带宽,估计原理见下文;表示 κ \kappa κ核密度函数。EViews中可以选择的核密度函数有Epanechnikov核函数(默认)、均匀 (Uniform) 核函数、三角(Triangular)核函数、二权(Biweight)核函数、三权(Triweight)核函数、正态(Normal)核函数、余弦(Cosinus)核函数,具体函数形式见图。

image-20200331180810735

image-20200331181950284

c T c_T cT的估计原理: c T = κ ( Φ − 1 ( τ + h n ) − Φ − 1 ( τ − h n ) ) c_{T}=\kappa\left(\Phi^{-1}\left(\tau+h_{n}\right)-\Phi^{-1}\left(\tau-h_{n}\right)\right) cT=κ(Φ1(τ+hn)Φ1(τhn))

其中 κ = min ⁡ ( s , I Q R / 1.34 ) \kappa=\min (s, I Q R / 1.34) κ=min(s,IQR/1.34), I Q R IQR IQR为四分位距, I Q R = Q 3 − Q 1 \mathrm{I} Q \mathrm{R}=Q_{3}-Q_{1} IQR=Q3Q1; s s s为残差的标准差; h n h_n hn是Siddiqui带宽,
h n = T − 1 / 3 Z α 2 / 3 ( 1.5 ( φ ( Φ − 1 ( τ ) ) ) 2 2 ( Φ − 1 ( τ ) ) 2 + 1 ) 1 / 3 h_{n}=T^{-1 / 3} Z_{\alpha}^{2 / 3}\left(\frac{1.5\left(\varphi\left(\Phi^{-1}(\tau)\right)\right)^{2}}{2\left(\Phi^{-1}(\tau)\right)^{2}+1}\right)^{1 / 3} hn=T1/3Zα2/3(2(Φ1(τ))2+11.5(φ(Φ1(τ)))2)1/3
Φ \Phi Φ表示正态分布的积累分布函数, Φ − 1 \Phi^{-1} Φ1表示正态分布的逆函数, φ \varphi φ表示正态分布的密度函数, Z α = Φ − 1 ( 1 − α / 2 ) Z_{\alpha}=\Phi^{-1}(1-\alpha / 2) Zα=Φ1(1α/2)为选择的显著性水平 α \alpha α对应的 Z Z Z值。

文中只列出一种方差的估计原理,更多内容详见Eviews 8帮助文件

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值