各变量含义
待估计方程:
Q
Y
t
[
τ
∣
Z
t
−
1
]
=
a
(
τ
)
+
Y
t
−
1
,
p
′
α
(
τ
)
+
X
t
−
1
,
q
′
β
(
τ
)
=
Z
t
−
1
′
θ
(
τ
)
Q_{Y_{t}}\left[\tau | Z_{t-1}\right]=a(\tau)+Y_{t-1, p}^{\prime} \alpha(\tau)+X_{t-1, q}^{\prime} \beta(\tau)=Z_{t-1}^{\prime} \theta(\tau)
QYt[τ∣Zt−1]=a(τ)+Yt−1,p′α(τ)+Xt−1,q′β(τ)=Zt−1′θ(τ)
其中,
a
(
τ
)
a(\tau)
a(τ)为截距项,
α
(
τ
)
\alpha(\tau)
α(τ)和
β
(
τ
)
\beta(\tau)
β(τ)为回归系数列向量;
θ
(
τ
)
\theta(\tau)
θ(τ)为回归系数向量,
a
(
τ
)
=
[
a
l
p
h
a
(
τ
)
,
α
(
τ
)
′
,
β
(
τ
)
′
]
′
a(\tau)=\left[alpha(\tau), \alpha(\tau)^{\prime}, \beta(\tau)^{\prime}\right]^{\prime}
a(τ)=[alpha(τ),α(τ)′,β(τ)′]′
Y t − 1 , p ′ = ( Y t − 1 , ⋯ , Y t − p ) \quad Y_{t-1, p}^{\prime}=\left(Y_{t-1}, \cdots, Y_{t-p}\right) Yt−1,p′=(Yt−1,⋯,Yt−p)
X t − 1 , q ′ = ( X t − 1 , ⋯ , X t − q ) \quad X_{t-1, q}^{\prime}=\left(X_{t-1}, \cdots, X_{t-q}\right) Xt−1,q′=(Xt−1,⋯,Xt−q)
Z t − 1 ′ = ( Y t − 1 , p ′ , X t − 1 , q ′ ) Z_{t-1}^{\prime}=\left(Y_{t-1, p}^{\prime}, X_{t-1, q}^{\prime}\right) Zt−1′=(Yt−1,p′,Xt−1,q′)
Wald检验量为: W T ( τ ) = T β ^ ( τ ) ′ Σ ^ ( τ ) − 1 β ^ ( τ ) τ ( 1 − τ ) \mathrm{W}_{T}(\tau)=T \frac{\hat{\beta}(\tau)^{\prime} \hat{\Sigma}(\tau)^{-1} \hat{\beta}(\tau)}{\tau(1-\tau)} WT(τ)=Tτ(1−τ)β^(τ)′Σ^(τ)−1β^(τ)
Sup-Wald检验量为: sup W T = sup i = 1 , ⋯ , n W T ( τ i ) \sup W_{T}=\sup _{i=1, \cdots, n} W_{T\left(\tau_{i}\right)} supWT=i=1,⋯,nsupWT(τi)
Python在进行分位数回归时,方差默认为核估计
分位数方差核密度估计原理(基于Eviews帮助文件)
独立但不同分布假设下的参数渐近分布
当分位数密度函数独立但不同分布即与解释变量X相关时, T ( β ^ ( τ ) − β ( τ ) ) \sqrt{T}(\hat{\beta}(\tau)-\beta(\tau)) T(β^(τ)−β(τ))的渐近分布服从Huber sandwich形式:
T
(
β
^
(
τ
)
−
β
(
τ
)
)
∼
N
(
0
,
τ
(
1
−
τ
)
H
(
τ
)
−
1
J
H
(
τ
)
−
1
)
\sqrt{T}\left(\hat{\beta}_{(\tau)}-\beta_{(\tau)}\right){\sim} N\left(0, \tau(1-\tau) H(\tau)^{-1} J H(\tau)^{-1}\right)
T(β^(τ)−β(τ))∼N(0,τ(1−τ)H(τ)−1JH(τ)−1)
其中
T
T
T为样本容量,
τ
\tau
τ为分位点,
β
^
(
τ
)
\hat{\beta}_{(\tau)}
β^(τ)为
τ
\tau
τ分位点下回归系数估计量,
N
N
N为正态分布,
X
i
X_{i}
Xi为解释变量矩阵;
J
=
lim
n
→
∞
(
∑
i
X
i
X
i
′
T
)
=
lim
n
→
∞
(
X
X
T
)
J=\lim _{n \rightarrow \infty}\left(\sum_{i} \frac{X_{i} X_{i}^{\prime}}{T}\right)=\lim _{n \rightarrow \infty}\left(\frac{X X}{T}\right)
J=n→∞lim(i∑TXiXi′)=n→∞lim(TXX)
H ( τ ) = lim T → ∞ ( ∑ i X i X i ′ f i ( q i ( τ ) ) / T ) H(\tau)=\lim _{T \rightarrow \infty}\left(\sum_{i} X_{i} X_{i}^{\prime} f_{i}\left(q_{i}(\tau)\right) / T\right) H(τ)=T→∞lim(i∑XiXi′fi(qi(τ))/T)
f
i
(
q
i
(
τ
)
)
f_{i}\left(q_{i}(\tau)\right)
fi(qi(τ))是个体
i
i
i在
τ
\tau
τ分位点上的条件密度函数。使用核密度进行估计:
H
^
(
τ
)
=
(
1
/
T
)
∑
i
=
1
T
c
T
−
1
K
(
u
^
(
τ
)
t
/
c
T
)
X
i
X
i
′
\hat{H}(\tau)=(1 / T) \sum_{i=1}^{T} c_{T}^{-1} K\left(\hat{u}_{(\tau) t} / c_{T}\right) X_{i} X_{i}^{\prime}
H^(τ)=(1/T)i=1∑TcT−1K(u^(τ)t/cT)XiXi′
其中
u
^
(
τ
)
i
\hat{\mathcal{u}}_{(\tau) i}
u^(τ)i表示分位数回归的残差;
c
T
c_T
cT为带宽,估计原理见下文;表示
κ
\kappa
κ核密度函数。EViews中可以选择的核密度函数有Epanechnikov核函数(默认)、均匀 (Uniform) 核函数、三角(Triangular)核函数、二权(Biweight)核函数、三权(Triweight)核函数、正态(Normal)核函数、余弦(Cosinus)核函数,具体函数形式见图。

c T c_T cT的估计原理: c T = κ ( Φ − 1 ( τ + h n ) − Φ − 1 ( τ − h n ) ) c_{T}=\kappa\left(\Phi^{-1}\left(\tau+h_{n}\right)-\Phi^{-1}\left(\tau-h_{n}\right)\right) cT=κ(Φ−1(τ+hn)−Φ−1(τ−hn))
其中
κ
=
min
(
s
,
I
Q
R
/
1.34
)
\kappa=\min (s, I Q R / 1.34)
κ=min(s,IQR/1.34),
I
Q
R
IQR
IQR为四分位距,
I
Q
R
=
Q
3
−
Q
1
\mathrm{I} Q \mathrm{R}=Q_{3}-Q_{1}
IQR=Q3−Q1;
s
s
s为残差的标准差;
h
n
h_n
hn是Siddiqui带宽,
h
n
=
T
−
1
/
3
Z
α
2
/
3
(
1.5
(
φ
(
Φ
−
1
(
τ
)
)
)
2
2
(
Φ
−
1
(
τ
)
)
2
+
1
)
1
/
3
h_{n}=T^{-1 / 3} Z_{\alpha}^{2 / 3}\left(\frac{1.5\left(\varphi\left(\Phi^{-1}(\tau)\right)\right)^{2}}{2\left(\Phi^{-1}(\tau)\right)^{2}+1}\right)^{1 / 3}
hn=T−1/3Zα2/3(2(Φ−1(τ))2+11.5(φ(Φ−1(τ)))2)1/3
Φ
\Phi
Φ表示正态分布的积累分布函数,
Φ
−
1
\Phi^{-1}
Φ−1表示正态分布的逆函数,
φ
\varphi
φ表示正态分布的密度函数,
Z
α
=
Φ
−
1
(
1
−
α
/
2
)
Z_{\alpha}=\Phi^{-1}(1-\alpha / 2)
Zα=Φ−1(1−α/2)为选择的显著性水平
α
\alpha
α对应的
Z
Z
Z值。
文中只列出一种方差的估计原理,更多内容详见Eviews 8帮助文件