P3机器学习笔记--李宏毅

一、为什么要知道到底是卡在local minima还是卡在saddlepoint呢?

1.因为如果是卡在local minima那可能就没有路可以走了。这是因为该点四周都比较高,你现在所在的位置已经是最低的点,此时loss最低。往四周走loss都会比较高,你不知道怎么走到其他地方。

2.但saddle point相比较就没有这个问题。如果你今天是卡在saddle point的话,saddle point旁边还是有路可以走的,还是有方向可以让你的loss更低的。你只要逃离saddle point,你就有可能让你的loss更低

鞍点(像马鞍)左右比较高前后比较底,gradient也为0

局部最低点

 

局部最大点 这些点统称为critical point驻点 

二、判断方法

证明请看李宏毅老师类神经网络训练不起来的第一节

 

 找一个hessian矩阵

1.当H是正定矩阵时,所有特征值都是正的这时候就是一个local minima。

2.当H是负定矩阵时,所有特征值都是负这时候是一个local maxima。

3.当特征值有正有负时,他是一个鞍点。

三、当是鞍点的时候怎么降低loss

假设这是我们这个function的errof surface

当然往左上和右下loss会升高,而往左下和左上会减小。四个角都是loss比较高的

那我们怎么知道呢?

首先算出特征值得矩阵

 

并且算出特征值,将特征值带入计算特征向量

 

 往(1,1)方向loss会降低

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值