【python 用逐步回归筛选变量】10分钟快速了解逐步回归筛选变量

在回归分析中,影响因变量y的因素很多,而有些自变量的对目标变量y的影响程度不同,为了建立一个相对最优的回归方程,我们需要筛选掉对目标变量y影响不大的变量,这就涉及到了变量选择问题。

逐步回归是通过假设检验的方法来筛选强特征,但如果直接用特征变量和结果变量做回归,看系数的正负和大小来判断变量的相关性,其实也是合理的,但是为了考虑变量间的相互作用在回归模型中对结果的影响,通常还是应用逐步回归的方法。

在逐步回归中,提取哪些变量主要基于的假设是:在线性条件下,哪些变量组合能够更显著的影响因变量,则将其保留。

保留的具体操作方法有三种:

1.Forwardselection:从前向后,首先模型中只有一个对因变量影响最显著的自变量,之后尝试将加入另一自变量,观察加入自变量后的整个模型对因变量的影响是否显著增加(这里需要进行检验,如F,t,r方),通过这一过程反复迭代,直到没有自变量再符合加入模型的条件;

2.Backwardelimination:从后向前,此时,所有变量均放入模型,之后尝试将其中一个自变量从模型中剔除,看整个模型对因变量的影响是否有显著变化,之后将使影响减少的最小的变量剔除出队列,此过程不断迭代,直到没有自变量符合剔除的条件。

3.向前向后逐步回归:即前两种的结合,不是一味的增加变量,而是增加一个后,对整个模型的所有变量进行检验,剔除作用不显著的变量,最终得到一个相对最优的变量组合。

三.Python中逐步回归的实现

# -*- coding: utf-8 -*-

# 载入包
import pandas as pd
from statsmodels.formula.api import ols #加载ols模型
from sklearn.preprocessing import LabelEncoder


# 读取数据
data_path='D:/机器学习/实验作业/实验7/'
data=pd.read_excel(data_path+'Reg_RawDt.xlsx')

# 清洗面积段这个标签
le = LabelEncoder()
y6 = le.fit_transform(data['面积段'])
data['面积段']=y6


house_data=data

#分训练集测试集
import random
random.seed(123) #设立随机数种子
a=random.sample(range(len(house_data)),round(len(house_data)*0.3))
house_test=[]
for i in a:
    house_test.append(house_data.iloc[i])
house_test=pd.DataFrame(house_test)
house_train=house_data.drop(a)

# print(house_train)
# print(house_test)



#定义向前逐步回归函数
def forward_select(data,target):
    variate=set(data.columns)  #将字段名转换成字典类型
    variate.remove(target)  #去掉因变量的字段名
    selected=[]
    current_score,best_new_score=float('inf'),float('inf')  #目前的分数和最好分数初始值都为无穷大(因为AIC越小越好)
    #循环筛选变量
    while variate:
        aic_with_variate=[]
        for candidate in variate:  #逐个遍历自变量
            formula="{}~{}".format(target,"+".join(selected+[candidate]))  #将自变量名连接起来
            aic=ols(formula=formula,data=data).fit().aic  #利用ols训练模型得出aic值
            aic_with_variate.append((aic,candidate))  #将第每一次的aic值放进空列表
        aic_with_variate.sort(reverse=True)  #降序排序aic值
        best_new_score,best_candidate=aic_with_variate.pop()  #最好的aic值等于删除列表的最后一个值,以及最好的自变量等于列表最后一个自变量
        if current_score>best_new_score:  #如果目前的aic值大于最好的aic值
            variate.remove(best_candidate)  #移除加进来的变量名,即第二次循环时,不考虑此自变量了
            selected.append(best_candidate)  #将此自变量作为加进模型中的自变量
            current_score=best_new_score  #最新的分数等于最好的分数
            print("aic is {},continuing!".format(current_score))  #输出最小的aic值
        else:
            print("for selection over!")
            break
    formula="{}~{}".format(target,"+".join(selected))  #最终的模型式子
    print("final formula is {}".format(formula))
    model=ols(formula=formula,data=data).fit()
    return(model)

# 利用向前逐步回归筛选变量
forward_select(data=house_data,target='price')


lm_1=ols("price~area+Ifsubway+幼儿园个数+面积段+室+中层住宅+toward_3+医院数量+厅+低中高住宅分类+GroupareaSplit+银行个数+所处楼层是否低层+公园个数+toward_无+小学个数+中学个数",data=house_train).fit()
print(lm_1.summary())

在这里插入图片描述

在这里插入图片描述

### 回答1: Python中的Lasso回归可以用于筛选变量。Lasso回归是一种线性回归的变种,它通过对系数进行惩罚,可以将一些系数缩小甚至变为,从而实现变量筛选的效果。在Python中,可以使用scikit-learn库中的Lasso模型来进行变量筛选。具体实现方法可以参考相关的文档和教程。 ### 回答2: Lasso回归是一种常用的线性回归方法,适用于特征变量较多的情况下,可以用于筛选变量和缩减模型,是一种常用的特征选择方法。Lasso回归通过对模型进行惩罚(L1正则化)来尽可能地减少变量的数量,从而选择出最相关的变量。 Lasso回归不同于岭回归,岭回归的惩罚项是对系数的平方和进行惩罚(L2正则化),而Lasso回归的惩罚项是对系数绝对值之和进行惩罚(L1正则化)。Lasso回归的惩罚项可以将一些系数收缩到0,具有可以用于特征选择的能力。 通过Lasso回归,可以得到模型的系数,系数越大的变量对模型的影响越大,可以根据系数的大小来筛选出最相关的变量。同时,模型中系数为0的变量可以被视为无关变量,可以被去除,从而构建更简洁的模型。 使用Python进行Lasso回归的步骤如下: 1.准备数据:将数据分为训练集和测试集,将变量和响应变量分开。 2.进行标准化处理:使用sklearn.preprocessing中的scale函数将变量进行标准化处理,确保每个变量的重要性得到平等地对待。 3.进行Lasso回归:使用sklearn.linear_model中的Lasso函数,设置alpha参数,该参数控制惩罚力度,过大的alpha值会导致许多系数被收缩为0,过小的alpha值则不会有足够的惩罚力度。 4.评估模型:可以使用均方误差(MSE)或交叉验证来评估模型的性能。 5.筛选变量:根据Lasso回归得到的模型系数,可以选择系数较大的变量作为最相关的变量,同时,系数为0的变量可以被去除。 通过Lasso回归筛选变量,可以简化模型、增强模型的解释能力,并且可以减少过拟合的风险。但是需要注意,Lasso回归只适用于低维数据,对于高维数据可能会有过拟合的风险。 ### 回答3: LASSO回归是一种常用的特征选择方法,它可以通过惩罚高系数的方法去除那些对于模型不重要的特征变量,起到特征筛选的效果。Python中的Lasso回归可以通过scikit-learn中的linear_model模块中的Lasso方法来实现。 Lasso回归的核心思想是通过引入惩罚项,将模型的特征系数限制在一定范围内,进而减少模型的复杂程度。Lasso回归中的参数alpha用于控制惩罚项的强度,alpha越大,惩罚项的影响越强,保留下来的特征就越少;反之,alpha越小,保留下来的特征就越多。通过交叉验证的方法,可以确定最优的alpha值。 在Python中,我们可以通过以下代码来实现基于Lasso回归的特征筛选: ```python from sklearn.linear_model import LassoCV import numpy as np import pandas as pd # 读取数据 data = pd.read_csv('data.csv') # 将数据分为特征和标签 X = data.iloc[:, :-1] y = data.iloc[:, -1] # 初始化LassoCV模型 model = LassoCV(cv=5) # 训练模型 model.fit(X, y) # 打印系数 coef = pd.Series(model.coef_, index=X.columns) print("可以保留的特征数:", sum(coef != 0)) ``` 在上述代码中,首先读取数据,并将数据分为特征和标签,然后通过LassoCV方法初始化模型,并指定交叉验证的折数(cv=5)。 然后,使用模型的.fit()方法来训练模型,并使用coef_属性来获取模型训练后的系数,最后通过打印系数的方式来查看Lasso回归所保留的特征数量。 通过Lasso回归筛选变量,可以减少模型的复杂度,提高模型的准确性和预测性能。在日常工作中,Lasso回归可以用于数据预处理和特征选取。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东华果汁哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值