【python 加速方法】破剑式-numba 提高python速度

无意中发现了一个巨牛的人工智能教程,忍不住分享一下给大家。教程不仅是零基础,通俗易懂,而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。点这里可以跳转到教程。人工智能教程

在这里插入图片描述

官方文档:官方地址

Numba是Python的即时编译器,在使用NumPy数组和函数以及循环的代码上效果最佳。使用Numba的最常见方法是通过其装饰器集合,这些装饰器可应用于您的函数以指示Numba对其进行编译。调用带有Numba装饰的函数时,该函数将被“即时”编译为机器代码以执行,并且您的全部或部分代码随后可以本机机器速度运行!

安装包:

pip install numba

如果代码是数字定向的(做大量的数学运算),使用NumPy很多和/或有很多循环,那么Numba通常是一个不错的选择。
请注意,Numba无法理解Pandas,因此Numba只需通过解释器运行此代码,但会增加Numba内部开销!

下面我们来看个例子:

从1一直累加到1亿。

import time

def foo(x,y):
 tt = time.time()
 s = 0
 for i in range(x,y):
    s += i
 print('Time used: {} sec'.format(time.time()-tt))
 return s
print(foo(1,100000000))

运行结果:

Time used: 4.716892719268799 sec
4999999950000000

Process finished with exit code 0

numba 加速

# -*- coding: utf-8 -*-
import time
import numba as nb

@nb.jit
def foo(x, y):
 s = 0
 for i in range(x, y):
  s += i
 return s


tt = time.time()
print(foo(1, 100000000))
print('Time used: {} secs'.format(time.time() - tt))

运行结果:

4999999950000000
Time used: 0.15059757232666016 secs

可见足足快了30倍速度呢。

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读