GPT提示词分享 —— 口播脚本

 可用于撰写视频、直播、播客、分镜头和其他口语内容的脚本。 

提示词👇

请以人的口吻,采用缩略语、成语、过渡短语、感叹词、悬垂修饰语和口语化语言,避免重复短语和不自然的句子结构,撰写一篇关于 [主题] 的文章。

GPT3.5👇free2gpt

 

GPT4.0👇gpt4

 

### 关于 Prompt 技术的概念与使用 Prompt 是一种用于引导人工智能模型生成特定内容的技术。通过设计合适的提示语句(Prompts),可以有效控制 AI 的输出方向和质量。以下是关于 Prompt 技术的相关概念、使用方法以及示例教程。 #### 什么是 PromptPrompt 可以被定义为提供给机器学习模型的一组输入指令或上下文,旨在指导其完成某项具体任务[^1]。这些任务可能涉及文本生成、图像合成、代码编写或其他形式的内容创作。 #### 如何构建有效的 Prompts? 为了使 Prompt 更加高效并获得高质量的结果,通常需要注意以下几个方面: - **清晰的目标描述**:明确告诉模型希望它做什么,比如写一篇新闻报道还是解答某个科学问题。 - **详细的背景信息**:如果适用的话,给出足够的历史数据或者领域专业知识来帮助理解情境。 - **结构化的请求格式**:采用固定的模板有助于保持一致性,并让不同类型的查询更容易处理。 下面是一些具体的例子展示如何创建这样的提示串: ```plaintext 请扮演一位经验丰富的软件工程师,解释面向对象编程中的继承机制是什么?并且举两个实际应用场景说明它的优势所在。 ``` 上述实例不仅指定了角色身份还附加了额外的要求——即列举案例分析部分;这使得最终得到的回答更加全面深入。 另外还有更复杂的多轮对话型 prompts 设计模式,在这种情况下除了初始设定外还需要考虑后续交互过程中可能出现的各种分支情况提前做好规划以便维持整个交流过程连贯自然流畅无阻滞感。 #### Python 实现简单 Prompt 工具函数 这里提供了一个基于 OpenAI API 的小型工具类实现方案供参考学习之用: ```python import os from openai import OpenAI class SimplePromptTool: def __init__(self, api_key=None): self.client = OpenAI(api_key=api_key or os.getenv('OPENAI_API_KEY')) def generate_response(self, prompt_text, model="gpt-3.5-turbo", max_tokens=200): response = self.client.chat.completions.create( messages=[{"role": "user", "content": prompt_text}], model=model, max_tokens=max_tokens ) return response.choices[0].message.content.strip() if __name__ == "__main__": tool = SimplePromptTool() # Ensure you have set the OPENAI_API_KEY environment variable. result = tool.generate_response("介绍一下量子计算的基础原理及其潜在应用价值.") print(result) ``` 此脚本展示了怎样利用外部服务接快速搭建起自己的个性化问答平台雏形版本[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值