pytorch cuda上tensor的定义 以及 减少cpu操作的方法

cuda上tensor的定义

a = torch.ones(1000,1000,3).cuda()

某一gpu上定义

cuda1 = torch.device('cuda:1')
b = torch.randn((1000,1000,1000),device=cuda1)

删除某一变量

del a

在cpu定义tensor然后转到gpu

torch.zeros().cuda()

直接在gpu上定义,这样就减少了cpu的损耗

torch.cuda.FloatTensor(batch_size, self.hidden_dim, self.height, self.width).fill_(0)
### 如何在PyTorch中使用CUDA进行加速计算 为了使 PyTorch 能够利用 GPU 加速,必须确保已正确安装 CUDA 和 cuDNN,并且 PyTorch 版本与所使用的 CUDA 版本兼容[^5]。 #### 检查CUDA可用性 在编写代码之前,先确认当前环境是否支持 CUDA。这可以通过调用 `torch.cuda.is_available()` 函数完成: ```python import torch if not torch.cuda.is_available(): print("CUDA is not available.") else: print(f"CUDA version {torch.version.cuda} is installed and ready to use!") ``` #### 将张量移动到GPU上 一旦验证了 CUDA 的可用性,就可以通过 `.to(device)` 方法将张量转移到 GPU 上执行运算。`device` 参数指定了要使用的设备类型(CPU 或者 GPU),通常定义为 `'cuda'` 表示默认的第一个 GPU 设备;也可以指定特定编号的 GPU,比如 `'cuda:1'` 表示第二个 GPU。 ```python # 创建一个随机矩阵并将其放置于GPU之上 tensor_on_gpu = torch.randn(3, 3).to('cuda') print(tensor_on_gpu) # 执行一些简单的算术操作也会自动发生在GPU上面 result = tensor_on_gpu * 2. print(result) ``` #### 构建模型时启用GPU支持 对于神经网络模型而言,在实例化之后同样需要显式地把整个模型迁移到 GPU 中去运行。这里需要注意的是,不仅输入数据应该位于相同的 device 上面,而且所有的参数也需要被转移过去。 ```python class SimpleModel(torch.nn.Module): def __init__(self): super().__init__() self.linear = torch.nn.Linear(in_features=10, out_features=1) model = SimpleModel().to('cuda') # Move the model parameters onto the GPU input_data = torch.rand((batch_size, input_dim)).to('cuda') output = model(input_data) # Forward pass will happen on the GPU now loss_fn(output, target_tensor.to('cuda')).backward() # Backward propagation also happens here optimizer.step() ``` #### 多GPU设置下的分布式训练 当拥有多个 GPU 卡的时候,还可以进一步探索多卡并行的方式来进行更高效的训练过程。PyTorch 支持多种方式实现这一点,其中最简单的一种叫做 DataParallel API,它允许开发者轻松地让同一个 batch 数据分布在不同的 GPUs 上面同时处理。 ```python from torch.nn.parallel import DataParallel multi_gpu_model = DataParallel(model) outputs = multi_gpu_model(inputs) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值