React.createElement的理解使用

React.createElement(): 根据指定的第一个参数创建一个React元素。

React.createElement(
  type,
  [props],
  [...children]
)

第一个参数是必填,传入的是似HTML标签名称,eg: ul, li
第二个参数是选填,表示的是属性,eg: className
第三个参数是选填, 子节点,eg: 要显示的文本内容

看如下demo:

写法一:

var child1 = React.createElement('li', null, 'one');
    var child2 = React.createElement('li', null, 'two');
    var content = React.createElement('ul', { className: 'teststyle' }, child1, child2); // 第三个参数可以分开也可以写成一个数组
      ReactDOM.render(
          content,
        document.getElementById('example')
      );

写法二:

var child1 = React.createElement('li', null, 'one');
    var child2 = React.createElement('li', null, 'two');
    var content = React.createElement('ul', { className: 'teststyle' }, [child1, child2]);
      ReactDOM.render(
          content,
        document.getElementById('example')
      );

在我们应用JSX进行开发的时候,其实它最终会转化成React.createElement…去创建元素。
下面就通过一个官网上的DEMO来实际的理解一下:

//JSX写法:

class Hello extends React.Component {
    render() {
        return <div>Hello, { this.props.toWhat }</div>
    }
}

ReactDOM.render(
    <Hello toWhat=‘world’>,
    document.getElementById(‘root’)
)
// 转化为原生JS后的写法

class Hello extends React.Component {
    render(){
        return React.createElement(‘div’,null, `Hello,${this.props.toWhat}`)
    }
}

ReactDOM.render(
    React.createElement(‘Hello’, { toWhat: ‘world’ }, null),
    document.getElementById(‘root’)
)
关于YOLOv10中引入DynamicConv结构的信息目前尚未广泛公开,这可能是因为YOLO系列算法的更新版本发布信息有限或是该特定改进仍处于研究阶段。然而,在讨论动态卷积Dynamic Convolution)的应用时,通常指的是在网络层中自适应调整权重的能力,使得模型能够根据不同输入灵活改变其行为[^1]。 对于YOLO架构而言,集成DynamicConv意味着增强目标检测器处理多样化场景的能力。具体来说: - **特征提取优化**:通过学习不同位置上的专用滤波器来提高对复杂背景下的物体识别精度。 - **减少冗余计算**:仅针对感兴趣区域应用更精细的操作,从而节省资源并加速推理过程。 尽管具体的实现细节和官方发布的YOLOv10架构图暂时不可得,但可以根据现有知识推测,DynamicConv可能会被嵌入到骨干网络或颈部设计之中,以改善多尺度感知能力和鲁棒性。 ```python # 这是一个假设性的Python伪代码片段展示如何在一个简化版的目标检测框架里添加dynamic convolution机制 class DynamicConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3): super(DynamicConv, self).__init__() self.weight_generator = nn.Conv2d(in_channels=in_channels, out_channels=out_channels * (kernel_size ** 2), kernel_size=1) def forward(self, x): weights = self.weight_generator(x).view( batch_size, -1, height, width) # 动态生成每张图片上每个空间位置处使用的conv weight output = F.conv2d(input=x, weight=weights, stride=1, padding=(kernel_size//2)) return output ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值