PEFT 方法的含义和作用

PEFT(Parameter-Efficient Fine-Tuning,参数高效微调)是一种在深度学习中微调预训练模型的方法,旨在减少需要调整的参数数量,从而降低计算和存储成本,同时保持模型性能的提升。该方法特别适用于大规模预训练模型(如 BERT、GPT 等),因为这些模型通常包含数亿甚至数十亿的参数,完全微调的代价非常高。

核心思想

PEFT 方法的核心思想是:

  • 冻结预训练模型的大部分参数,仅微调一小部分参数或引入额外的可训练参数。
  • 通过这种方式,既能利用预训练模型的强大能力,又能节省资源。

PEFT 方法的常见应用包括自然语言处理(NLP)、计算机视觉(CV)等领域,尤其是在任务多样但资源有限的情况下。


常见的 PEFT 方法

以下是几种常见的 PEFT 方法及其特点:

  1. Adapter 方法
    在预训练模型的某些层之间插入小型可训练模块(Adapter),并只训练这些模块的参数,冻结其余部分。

    • 优点:显著减少了需要调整的参数数量。
    • 示例:Houlsby AdapterPfeiffer Adapter
  2. LoRA(Low-Rank Adaptation)
    通过低秩矩阵分解来高效微调权重变化。具体来说,仅训练一个低秩矩阵,使得原始模型的权重可以通过训练的低秩矩阵进行调整。

    • 优点:微调参数数量非常少,适合低资源场景。
  3. Prompt Tuning
    在输入数据中添加可学习的提示(Prompt),仅优化提示的表示,而不改变预训练模型本身的权重。

    • 优点:参数效率极高。
    • 示例:Prefix Tuning、P-Tuning。
  4. BitFit
    仅优化预训练模型中的偏置(Bias)参数,而冻结所有其他参数。

    • 优点:实现简单,参数量极少。
  5. Prefix Tuning
    为每个任务添加一组可训练的前缀向量,并在生成序列时结合这些向量进行推理。

    • 优点:适用于生成任务,微调参数数量低。

PEFT 的优势

  1. 高效性:相较于全模型微调,PEFT 方法需要调整的参数非常少,因此训练和存储成本显著降低。
  2. 迁移性:微调的参数可以轻松迁移到不同任务中,尤其在多任务场景下表现良好。
  3. 适应性:在资源有限或算力有限的情况下,PEFT 方法为模型优化提供了可行的解决方案。

使用场景

  • 低资源任务:如某些小规模数据集的领域适配。
  • 多任务学习:在一个基础模型上适配多个下游任务。
  • 边缘设备部署:通过减少训练参数,使得模型更容易部署到低算力设备上。
### SFT PEFT 的定义 监督微调 (Supervised Fine-Tuning, SFT) 是一种通过在特定任务的数据集上进一步训练预训练模型的方法,旨在使模型更好地适应具体应用场景的需求[^1]。 参数高效微调 (Parameter-Efficient Fine-Tuning, PEFT) 则专注于仅调整模型的一小部分参数来实现性能提升,而不是更新整个网络中的所有权重。这种方法可以显著减少计算资源消耗并加快推理速度。 ### 方法论差异 对于 **SFT** 而言,在这个过程中几乎所有的可学习参数都会被优化算法所修改。这通常意味着更高的灵活性以及可能达到更好的最终表现;然而这也伴随着更大的过拟合风险,尤其是在数据量有限的情况下。 相比之下,**PEFT** 只改变少量选定层或模块内的参数值。这种策略不仅有助于保持原始大规模预训练模型的知识结构不变,而且还能有效防止因过度定制而导致泛化能力下降的问题发生。 ### 实际应用考量 当面对较小规模的任务专用型数据集时,采用 **PEFT** 方案往往更为合适。因为此时如果进行全面的再训练可能会导致模型过分依赖于这些特定样本而失去对外部世界的广泛理解力。相反地,在拥有充足标注资料支持的前提下,则可以选择实施更彻底一些的 **SFT** 流程以追求极致的效果改进。 ```python # 示例代码展示如何加载不同的微调方法 from transformers import AutoModelForSequenceClassification model_sft = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2).train() for param in model_sft.parameters(): param.requires_grad = True # 对于SFT,允许所有参数参与梯度更新 model_peft = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2).eval() for name, param in model_peft.named_parameters(): if 'classifier' not in name: # 假设只对分类器层进行微调作为简化版PEFT的例子 param.requires_grad = False ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值