该论文提出了网络学习和数学最优化交替迭代求解的思想,开创了一个新的思路。尽管只是解决一个非盲复原的问题,还用成对数据集训练去噪网络,有杀鸡用牛刀的感觉,然而这个思想可以很容易推广到其他严重的病态逆问题上。
非盲复原问题:
利用HQS算法分裂数据保真项和正则项:
分解为两个子问题:
z子问题就是文中的denoiser,用成对的有噪/无噪数据集训练。x子问题是二次正则化最小二乘模型,有直接解、解析解、精确解。两个子问题交替迭代求解。
优势是利用网络的学习能力,和数学模型的灵活性。