Learning Deep CNN Denoiser Prior for Image Restoration

论文提出了一种新颖的方法,结合网络学习和数学最优化,通过HQS算法将非盲复原问题分解为可训练的去噪网络和解析解的子问题。这种方法展示了网络学习与数学模型的协同优势,有潜力扩展到其他复杂逆问题中。
摘要由CSDN通过智能技术生成

该论文提出了网络学习和数学最优化交替迭代求解的思想,开创了一个新的思路。尽管只是解决一个非盲复原的问题,还用成对数据集训练去噪网络,有杀鸡用牛刀的感觉,然而这个思想可以很容易推广到其他严重的病态逆问题上。

非盲复原问题:
在这里插入图片描述
利用HQS算法分裂数据保真项和正则项:
在这里插入图片描述
分解为两个子问题:
在这里插入图片描述
z子问题就是文中的denoiser,用成对的有噪/无噪数据集训练。x子问题是二次正则化最小二乘模型,有直接解、解析解、精确解。两个子问题交替迭代求解。

优势是利用网络的学习能力,和数学模型的灵活性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值