我谈冈萨雷斯的巴特沃斯滤波器(一)——幅频响应和频率变换

写在前面的内容

先看看冈萨雷斯对巴特沃斯滤波器的介绍。
低通
在这里插入图片描述
在这里插入图片描述
高通
在这里插入图片描述
在这里插入图片描述
带阻
在这里插入图片描述

在这里插入图片描述
带通
在这里插入图片描述
在这里插入图片描述
第一个问题,截止频率处的增益。

  • 0.5的增益是不是陡度小了?
  • 巴特沃斯是一家,这些滤波器截止频率处的增益谁和谁都不一样,甚者带通、带阻中上下截止频率处的增益都不一样,离谱了。

第二个问题,高通滤波器与低通滤波器的关系。若以巴特沃斯幅值平方表示,那这个公式就正好与下面频率变换的公式的碰上了,也许冈萨雷斯这里想当然了。
在这里插入图片描述
第三个问题,将带通、带阻滤波与低通、高通滤波割裂开来,它们都是选频滤波器
在这里插入图片描述

我谈巴特沃斯滤波器

巴特沃斯滤波器的幅频响应

巴特沃斯模拟低通滤波器一般由幅值平方函数定义。幅度响应 ∣ H ( j ω ) ∣ |H(j\omega)| H() 是传递函数的模,可以表示为:

∣ H ( j ω ) ∣ = 1 1 + ( ω ω c ) 2 N |H(j\omega)| = \frac{1}{\sqrt{1 + \left( \frac{\omega}{\omega_c} \right)^{2N}}} H()=1+(ωcω)2N 1

  1. 通带内

    • ω ≪ ω c \omega \ll \omega_c ωωc 时, ( ω ω c ) 2 N ≈ 0 \left( \frac{\omega}{\omega_c} \right)^{2N} \approx 0 (ωcω)2N0,因此:
      ∣ H ( j ω ) ∣ ≈ 1 |H(j\omega)| \approx 1 H()1
    • 在通带内,滤波器的增益接近 1(0 dB)。
  2. 截止频率处

    • ω = ω c \omega = \omega_c ω=ωc 时:
      ∣ H ( j ω c ) ∣ = 1 1 + 1 = 1 2 ≈ 0.707 |H(j\omega_c)| = \frac{1}{\sqrt{1 + 1}} = \frac{1}{\sqrt{2}} \approx 0.707 H(jωc)=1+1 1=2 10.707
    • 在截止频率处,增益为 − 3 -3 3dB。
  3. 阻带内

    • ω ≫ ω c \omega \gg \omega_c ωωc 时, ( ω ω c ) 2 N \left( \frac{\omega}{\omega_c} \right)^{2N} (ωcω)2N 很大,因此:
      ∣ H ( j ω ) ∣ ≈ 1 ( ω ω c ) N = ( ω c ω ) N |H(j\omega)| \approx \frac{1}{\left( \frac{\omega}{\omega_c} \right)^N} = \left( \frac{\omega_c}{\omega} \right)^N H()(ωcω)N1=(ωωc)N
    • 在阻带内,增益迅速下降,且随着频率的增加,衰减速度与阶数 N N N 成正比。

总结:巴特沃斯模拟低通滤波器,在截止频率处幅值从最大值下降到它的 0.707,而不是0.5。

频率变换

在这里插入图片描述

巴特沃斯各种滤波器

在语音信号处理中,相位信息的重要性通常不如幅度信息显著。这是因为人类的听觉系统对幅度谱特征更加敏感,尤其是对短时幅度谱特征的响应更为明显。这意味着,即使语音信号的相位发生变化,只要幅度谱特征保持相对稳定,人耳往往难以察觉到明显的差异。but在图像处理中,线性相位特征相当重要。

所以下面是在幅值响应的基础构造零相位滤波器。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

看到了吧,无论什么情况,截止频率处的增益都为经典的 − 3 -3 3dB。另外,这个值也保证陡度。

另一点,振铃在信号处理中不重要,信号处理只想硬件上更加逼近理想;图像处理中专注的是振铃,物理可不可实现不care,所以不用反复强调。反正我被坑得很惨。

在这里插入图片描述

看看MATLAB

因为数字图像处理中一般不会用IIR,所以MATLAB只提供了一维的IIR滤波器设计。归一化截止频率0.4。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

例子

最后,举一个图像处理的例子。

在这里插入图片描述

### 二阶巴特沃斯带通滤波器标准公式 二阶巴特沃斯带通滤波器的设计基于其频响应特性,该特性在通带范围内具有平坦的最大值,并逐渐衰减到截止频率之外。对于连续时间域下的二阶巴特沃斯带通滤波器,传递函数可以表示为: #### 连续时间域下二阶巴特沃斯带通滤波器的传递函数 \[ H(s) = \frac{G_0 \cdot \omega_0 / Q}{s^2 + s(\omega_0/Q) + \omega_0^2} \] 其中: - \( G_0 \): 增益系数; - \( \omega_0 \): 中心角频率(单位:弧度/秒),对应于带通滤波器的中心频率; - \( Q \): 品质因数,定义为中心频率与带宽之比。 此公式的推导可以通过标准化的阶和二阶巴特沃斯多项式扩展而来[^1]。 当转换至离散时间域时,通常采用双线性变换法实现从模拟滤波器到数字滤波器的映射。然而,在这过程中需要注意的是,双线性变换会引入非线性的频率扭曲效应,因此需要通过预畸变技术来校正这种影响[^3]。 以下是利用 MATLAB 实现的个简单例子,展示如何构建个二阶巴特沃斯带通滤波器并将其转化为离散形式: ```matlab % 参数设置 fs = 1000; % 采样率 (Hz) fc_low = 50; % 下限截止频率 (Hz) fc_high = 150; % 上限截止频率 (Hz) % 设计带通滤波器 [b, a] = butter(2, [fc_low fc_high]/(fs/2), 'bandpass'); % 显示滤波器系数 disp('分子系数 b:'); disp(b); disp('分母系数 a:'); disp(a); % 绘制频率响应 [h, f] = freqz(b, a, 512, fs); plot(f, 20*log10(abs(h))); xlabel('Frequency (Hz)'); ylabel('Magnitude (dB)'); title('Butterworth Bandpass Filter Frequency Response'); grid on; ``` 上述代码片段展示了如何使用 `butter` 函数生成指定参数的二阶巴特沃斯带通滤波器,并绘制其频率响应曲线[^2]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值