零相位响应(Zero-Phase Response)滤波器——剖析图像增强中的空域模板


图像处理领域中,频域增强一般都使用零相位响应(Zero-Phase Response)滤波器。

信号处理中的零相位响应

零相位响应是信号处理中的一个概念,主要应用于数字滤波器设计和分析中。在理想情况下,零相位响应意味着系统对输入信号的处理不会引入相位延迟或超前,即输出信号与输入信号之间没有相位差。

在实际实现中,零相位响应通常通过以下两种方法之一来实现:

  1. 对称滤波器:设计具有对称脉冲响应的滤波器。这类滤波器的一个例子是对称FIR(Finite Impulse Response,有限脉冲响应)滤波器。对称FIR滤波器可以在不改变信号相位的情况下对信号进行滤波,因为它在时域上是对称的,所以其相位响应为零(或常数)。

  2. 前后向滤波:先将信号正向通过一个线性相位滤波器,然后将输出反转,再次通过同一个滤波器,最后再将结果反转回原方向。这种方法可以使相位失真相互抵消,从而达到零相位的效果。MATLAB中的filtfilt函数就是基于这一原理实现的。

在信号处理中,虽然零相位响应可以消除相位失真,但在实际应用中可能会引入其他类型的失真,例如由于非因果性(即滤波器需要未来的输入值才能产生当前的输出值)导致的问题。

对空域滤波器的要求

实数且偶对称的函数的傅里叶变换 F ( ω ) F(\omega) F(ω)是实数且偶对称。

证明

  • 如果 f ( t ) f(t) f(t)是实数且偶对称(即 f ( t ) = f ( − t ) f(t) = f(-t) f(t)=f(t)),那么其傅里叶变换 F ( ω ) F(\omega) F(ω)将是实数且偶对称。
  • 数学表达式为:
    F ( ω ) = ∫ − ∞ ∞ f ( t ) e − j ω t   d t F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} \, dt F(ω)=f(t)ejωtdt
  • 由于 f ( t ) f(t) f(t)是偶函数, e − j ω t = cos ⁡ ( ω t ) − j sin ⁡ ( ω t ) e^{-j\omega t} = \cos(\omega t) - j \sin(\omega t) ejωt=cos(ωt)jsin(ωt),因此:
    F ( ω ) = ∫ − ∞ ∞ f ( t ) cos ⁡ ( ω t )   d t − j ∫ − ∞ ∞ f ( t ) sin ⁡ ( ω t )   d t F(\omega) = \int_{-\infty}^{\infty} f(t) \cos(\omega t) \, dt - j \int_{-\infty}^{\infty} f(t) \sin(\omega t) \, dt F(ω)=f(t)cos(ωt)dtjf(t)sin(ωt)dt
  • 因为 f ( t ) f(t) f(t)是偶函数, sin ⁡ ( ω t ) \sin(\omega t) sin(ωt)是奇函数,所以:
    ∫ − ∞ ∞ f ( t ) sin ⁡ ( ω t )   d t = 0 \int_{-\infty}^{\infty} f(t) \sin(\omega t) \, dt = 0 f(t)sin(ωt)dt=0
  • 因此:
    F ( ω ) = ∫ − ∞ ∞ f ( t ) cos ⁡ ( ω t )   d t F(\omega) = \int_{-\infty}^{\infty} f(t) \cos(\omega t) \, dt F(ω)=f(t)cos(ωt)dt
  • 这是一个实数。

图像增强中,这也就是为什么我们看到空域滤波器一般都是偶对称的,这也就是为什么空域滤波通常用的都是互相关运算,而不是卷积运算。

中间一列是零相位响应。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

一阶差分滤波器不是零相位响应滤波器

而一阶差分不是偶对称的,所以一般不用于图像增强,人家常用于边缘检测。奇对称函数的傅里叶变换是纯虚数(中间一列)。

在这里插入图片描述

奇对称函数 f ( t ) f(t) f(t)的傅里叶变换 F ( ω ) F(\omega) F(ω)是纯虚数。

证明

f ( t ) f(t) f(t)是一个奇对称函数,即满足 f ( t ) = − f ( − t ) f(t) = -f(-t) f(t)=f(t)

傅里叶变换的定义为:
F ( ω ) = ∫ − ∞ ∞ f ( t ) e − j ω t   d t F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} \, dt F(ω)=f(t)ejωtdt

将复指数 e − j ω t e^{-j\omega t} ejωt分解为实部和虚部:
e − j ω t = cos ⁡ ( ω t ) − j sin ⁡ ( ω t ) e^{-j\omega t} = \cos(\omega t) - j \sin(\omega t) ejωt=cos(ωt)jsin(ωt)

因此,傅里叶变换可以写成:
F ( ω ) = ∫ − ∞ ∞ f ( t ) ( cos ⁡ ( ω t ) − j sin ⁡ ( ω t ) )   d t F(\omega) = \int_{-\infty}^{\infty} f(t) (\cos(\omega t) - j \sin(\omega t)) \, dt F(ω)=f(t)(cos(ωt)jsin(ωt))dt

将上述积分分为实部和虚部两部分:
F ( ω ) = ∫ − ∞ ∞ f ( t ) cos ⁡ ( ω t )   d t − j ∫ − ∞ ∞ f ( t ) sin ⁡ ( ω t )   d t F(\omega) = \int_{-\infty}^{\infty} f(t) \cos(\omega t) \, dt - j \int_{-\infty}^{\infty} f(t) \sin(\omega t) \, dt F(ω)=f(t)cos(ωt)dtjf(t)sin(ωt)dt

由于 f ( t ) f(t) f(t)是奇对称函数,即 f ( t ) = − f ( − t ) f(t) = -f(-t) f(t)=f(t),我们可以利用这一性质来分析两个积分项。

考虑实部积分:
∫ − ∞ ∞ f ( t ) cos ⁡ ( ω t )   d t \int_{-\infty}^{\infty} f(t) \cos(\omega t) \, dt f(t)cos(ωt)dt

由于 f ( t ) f(t) f(t)是奇函数,而 cos ⁡ ( ω t ) \cos(\omega t) cos(ωt)是偶函数,它们的乘积 f ( t ) cos ⁡ ( ω t ) f(t) \cos(\omega t) f(t)cos(ωt)是奇函数。奇函数在对称区间上的积分为零:
∫ − ∞ ∞ f ( t ) cos ⁡ ( ω t )   d t = 0 \int_{-\infty}^{\infty} f(t) \cos(\omega t) \, dt = 0 f(t)cos(ωt)dt=0

考虑虚部积分:
∫ − ∞ ∞ f ( t ) sin ⁡ ( ω t )   d t \int_{-\infty}^{\infty} f(t) \sin(\omega t) \, dt f(t)sin(ωt)dt

由于 f ( t ) f(t) f(t)是奇函数,而 sin ⁡ ( ω t ) \sin(\omega t) sin(ωt)也是奇函数,它们的乘积 f ( t ) sin ⁡ ( ω t ) f(t) \sin(\omega t) f(t)sin(ωt)是偶函数。偶函数在对称区间上的积分是非零的,记为 A A A
∫ − ∞ ∞ f ( t ) sin ⁡ ( ω t )   d t = A \int_{-\infty}^{\infty} f(t) \sin(\omega t) \, dt = A f(t)sin(ωt)dt=A

将上述结果代入傅里叶变换的表达式中:
F ( ω ) = 0 − j A = − j A F(\omega) = 0 - jA = -jA F(ω)=0jA=jA

这里 A A A是一个实数,因此 F ( ω ) F(\omega) F(ω)是一个纯虚数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值