频率间隔、频率分辨率与频率采样密度

概念

  1. 频率间隔 ( Δ F \Delta F ΔF)
    • 频率间隔 Δ F \Delta F ΔF 与采样周期 T T T 有关,公式为:
      Δ F = N Δ F res = 1 T = F s [ Hz ] \Delta F = N \Delta F_{\text{res}} = \frac{1}{T} = F_s \quad [\text{Hz}] ΔF=NΔFres=T1=Fs[Hz]
      提高采样率的影响
    • 增加采样率会扩展频率间隔。
      在这里插入图片描述
  2. 频率分辨率 ( F res F_{\text{res}} Fres)
    • 频率分辨率 F res F_{\text{res}} Fres 与采样周期 T T T 和采样点数 N N N 有关,公式为:
      F res = 1 N T [ Hz ] F_{\text{res}} = \frac{1}{NT} \quad [\text{Hz}] Fres=NT1[Hz]
      增加观测时间的影响
    • 增加观测时间可以提高频率分辨率。
  3. 频率采样密度
    • 零填充不会改变频率分辨率,只会增加DFT的点数,从而使得频率轴上的点更密集。
    • 频率分辨率由观测时间的长度决定,零填充不会增加这个长度。

关系

频率间隔、频率分辨率和频率采样密度的关系

  • 频率间隔由采样周期决定。
  • 频率分辨率由观测时间的长度决定。频率分辨率只取决于有效数据的点数,只有在观察或实验中取得更长的有效数据,才能给DFT算法提供更多新信息来区分两个频率,获得“高分辨频谱”。
  • 补零运算只是试图充分发掘既有数据的信息,但没有增加任何新的信息,不能提高频率分辨率,只是提供了采样间隔较密的“高密度频谱”。
序号失真描述及原因应对措施及原因备注
1频谱混叠:时域采样,对应频域周期延拓,在高频部分频谱混叠提高采样率-
2频谱泄漏:时域截断(加窗),对应频域(与窗函数频谱)卷积,使得信号频谱扩充(泄漏)到整个 [ − π , π ] [-π, π] [π,π]区间 (出现了本来没有的频率分量。)增加有效数据长度频率分辨率、高分辨频谱、物理分辨率
3栅栏效应:N点DFT是对连续频谱(DTFT)N点等间隔采样所得,无法观测到采样点之间的频谱形状对数据补零,提高DFT运算点数,即提高DFT对DTFT采样密集程度频率分辨力、高密度频谱、计算分辨率
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值