概念
- 频率间隔 (
Δ
F
\Delta F
ΔF):
- 频率间隔
Δ
F
\Delta F
ΔF 与采样周期
T
T
T 有关,公式为:
Δ F = N Δ F res = 1 T = F s [ Hz ] \Delta F = N \Delta F_{\text{res}} = \frac{1}{T} = F_s \quad [\text{Hz}] ΔF=NΔFres=T1=Fs[Hz]
提高采样率的影响: - 增加采样率会扩展频率间隔。
- 频率间隔
Δ
F
\Delta F
ΔF 与采样周期
T
T
T 有关,公式为:
- 频率分辨率 (
F
res
F_{\text{res}}
Fres):
- 频率分辨率
F
res
F_{\text{res}}
Fres 与采样周期
T
T
T 和采样点数
N
N
N 有关,公式为:
F res = 1 N T [ Hz ] F_{\text{res}} = \frac{1}{NT} \quad [\text{Hz}] Fres=NT1[Hz]
增加观测时间的影响: - 增加观测时间可以提高频率分辨率。
- 频率分辨率
F
res
F_{\text{res}}
Fres 与采样周期
T
T
T 和采样点数
N
N
N 有关,公式为:
- 频率采样密度:
- 零填充不会改变频率分辨率,只会增加DFT的点数,从而使得频率轴上的点更密集。
- 频率分辨率由观测时间的长度决定,零填充不会增加这个长度。
关系
频率间隔、频率分辨率和频率采样密度的关系:
- 频率间隔由采样周期决定。
- 频率分辨率由观测时间的长度决定。频率分辨率只取决于有效数据的点数,只有在观察或实验中取得更长的有效数据,才能给DFT算法提供更多新信息来区分两个频率,获得“高分辨频谱”。
- 补零运算只是试图充分发掘既有数据的信息,但没有增加任何新的信息,不能提高频率分辨率,只是提供了采样间隔较密的“高密度频谱”。
序号 | 失真描述及原因 | 应对措施及原因 | 备注 |
---|---|---|---|
1 | 频谱混叠:时域采样,对应频域周期延拓,在高频部分频谱混叠 | 提高采样率 | - |
2 | 频谱泄漏:时域截断(加窗),对应频域(与窗函数频谱)卷积,使得信号频谱扩充(泄漏)到整个 [ − π , π ] [-π, π] [−π,π]区间 (出现了本来没有的频率分量。) | 增加有效数据长度 | 频率分辨率、高分辨频谱、物理分辨率 |
3 | 栅栏效应:N点DFT是对连续频谱(DTFT)N点等间隔采样所得,无法观测到采样点之间的频谱形状 | 对数据补零,提高DFT运算点数,即提高DFT对DTFT采样密集程度 | 频率分辨力、高密度频谱、计算分辨率 |