holdout
将训练集分为train,validation 测试集保持不变
holdout缺点:模型性能评估对训练集的划分极其敏感
k折交叉验证
from sklearn.model_selection import KFold
import numpy as np
kf = KFold(n_splits =3,shuffle= True ) #n_splits > =2 random_state=np.random.seed(1)可保证每次随机都一样
print kf
x = np.array([x for x in range(15)])
print x
for train_index, test_index in kf.split(x):
print train_index,test_index
# 结果
KFold(n_splits=3, random_state=None, shuffle=True)
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14]
[ 0 1 3 4 5 7 8 9 10 11] [ 2 6 12 13 14]
[ 0 2 5 6 7 10 11 12 13 14] [1 3 4 8 9]
[ 1 2 3 4 6 8 9 12 13 14] [ 0 5 7 10 11]
至于holdout,从Kfold中随便取一个就好了
import sklearn