python实现 K折交叉验证/hold out

holdout

将训练集分为train,validation 测试集保持不变
holdout缺点:模型性能评估对训练集的划分极其敏感

k折交叉验证

sklearn KFold

from sklearn.model_selection import KFold
import numpy as np

kf = KFold(n_splits =3,shuffle= True ) #n_splits > =2  random_state=np.random.seed(1)可保证每次随机都一样
print kf
x = np.array([x for x in range(15)])
print x 
for train_index, test_index in kf.split(x):
	print train_index,test_index
# 结果
KFold(n_splits=3, random_state=None, shuffle=True)
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14]

[ 0  1  3  4  5  7  8  9 10 11] [ 2  6 12 13 14]
[ 0  2  5  6  7 10 11 12 13 14] [1 3 4 8 9]
[ 1  2  3  4  6  8  9 12 13 14] [ 0  5  7 10 11]

至于holdout,从Kfold中随便取一个就好了

import sklearn
参考

如何在kaggle首战中进入前10%

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值