欧拉数 “e” :定义我们世界的数学奇迹 | 简介 / 起源 / 性质 / 应用

注:机翻,未校。


“e” is Just as Important as Pi fact

“e” 与 π 一样重要

Researched by Thomas DeMichele
Published - November 7, 2023
Last Updated - November 9, 2023

Is Euler’s Number the New Pi?

欧拉数是新的 π 吗?

We all have heard of the famous mathematical constant Pi, but did you know there is another constant that is just as important called “e”? Often referred to as Euler’s number, after the Swiss mathematician Leonhard Euler, “e” is approximately equal to 2.71828 2.71828 2.71828 and is deeply ingrained in the fabric of mathematics. Discovered in the context of compound interest, “e” has since proven its significance across various domains of mathematics and natural phenomena, akin to the constancy of pi in circular calculations.[1][2]
我们都知道著名的数学常数 π,但你知道还有一个同样重要的常数叫作 “e” 吗?它通常被称为欧拉数,以瑞士数学家莱昂哈德·欧拉的名字命名。“e” 的近似值为 2.71828,在数学的各个领域中都有着深远的影响,就像 π 在圆周计算中的重要性一样。“e” 最初是在研究复利时被发现的,它在自然现象和数学的各个领域中都显示出了其重要性。

Common Beliefs and Applications of Pi and “e”

π 和 “e” 的常见认知及其应用

While Pi garners acclaim for its geometric applications, such as calculating the circumference and area of circles—a principle essential for fields ranging from architecture to engineering—”e” holds its ground in dynamic systems that change continuously.
尽管 π 因其在几何应用方面的关键作用而备受赞誉,例如计算圆的周长和面积,这一原理对于从建筑到工程的各个领域都至关重要,但 “e” 在持续变化的动态系统中发挥着重要作用。

The contrast in public recognition between Pi and “e” may be attributed to Pi’s tangible connection to everyday geometry; we see its applications in wheels, clocks, and pie charts. In contrast, “e” operates behind the scenes, driving both theoretical explorations and practical processes.
π 之所以比 “e” 更受公众关注,可能是因为 π 与日常几何的紧密联系;我们在车轮、时钟和饼图中都能看到它的应用。相比之下,“e” 在幕后发挥作用,推动着理论探索和实际进程。

For instance, “e” is critical in finance for determining continuously compounded interest, profoundly affecting savings and loan economics. The formula F V = P V × e ( i × t ) FV = PV \times e^{(i \times t)} FV=PV×e(i×t) illustrates how investments grow over time in a way that a simple interest calculation using Pi cannot capture. This same principle of growth extends to biology, where “e” models population dynamics and the spread of diseases, influencing public health policies and treatments.
例如,在金融领域,“e” 对于计算连续复利至关重要,对储蓄和贷款经济产生了深远影响。公式 F V = P V × e ( i × t ) FV = PV \times e^{(i \times t)} FV=PV×e(i×t) 展示了投资随时间增长的方式,这是简单的基于 π 的利息计算所无法捕捉的。同样的增长原理也适用于生物学领域,“e” 用于模拟人口动态和疾病传播,影响公共卫生政策和治疗方案。

In technology, “e” informs the decay algorithms that predict how long a smartphone battery will last or how quickly a hot drink will cool, applications that Pi’s geometric focus doesn’t address. Meanwhile, “e” also describes the rate of atmospheric pollutant degradation, a vital component of environmental science.
在技术领域,“e” 用于指导衰减算法,预测智能手机电池的续航时间或热饮的冷却速度,这些应用是 π 的几何焦点所无法涉及的。同时,“e” 还描述了大气污染物降解的速率,这是环境科学的一个重要组成部分。

Both constants are foundational, yet their applications are distinct: Pi is the go-to for static geometric calculations, while “e” excels in modeling growth and decay, processes that are inherently dynamic and temporal. Together, they form the backbone of mathematical constants that describe the universe, with “e” deserving as much recognition as Pi for its diverse and critical applications in our ever-changing world.[3]
这两个常数都是基础性的,但它们的应用领域不同:π 是静态几何计算的首选,而 “e” 在模拟增长和衰减方面表现出色,这些过程本质上是动态的和时间相关的。它们共同构成了描述宇宙的数学常数的骨干,“e” 因其在我们不断变化的世界中的多样化和关键性应用而应获得与 π 一样的认可。

Who Was Leonhard Euler?

莱昂哈德·欧拉是谁?

Getting a deeper understanding “e” and why it is important also means delving into the life of Leonhard Euler.[4]
要更深入地理解 “e” 以及它为何重要,也意味着要深入了解莱昂哈德·欧拉的生活。

Euler was Born in 1707 in Basel, Switzerland, and later mentored by Johann Bernoulli (see Bernoulli numbers). Although famous for the constant, contributions extend well beyond his establishment of “e” and include geometry, calculus, trigonometry, algebra, fluid dynamics, and astronomy.
欧拉于 1707 年出生于瑞士巴塞尔,后来师从约翰·伯努利(见 伯努利数)。尽管他因常数 “e” 而闻名,但他的贡献远远超出了对 “e” 的创立,还包括几何学、微积分、三角学、代数、流体动力学和天文学。

Euler’s intellectual journey was marked by an extraordinary breadth of research and an ability to solve problems that had baffled his predecessors. His prolific output includes the introduction of much of modern mathematical terminology and notation, such as the concept of a mathematical function and the notation f ( x ) f(x) f(x).
欧拉的研究领域广泛,他解决了许多前辈们困惑的问题。他丰富的学术成果包括引入了许多现代数学术语和符号,例如数学函数的概念和 f ( x ) f(x) f(x) 的表示法。

Notably, Euler’s formula in complex analysis, e i x = cos ⁡ ( x ) + i sin ⁡ ( x ) e^{ix} = \cos(x) + i\sin(x) eix=cos(x)+isin(x), where “i” is the imaginary unit, is hailed as one of the most beautiful theorems in mathematics because it establishes a deep relationship between the exponential function and trigonometric functions. This formula is a special case of Euler’s identity, often cited as the most remarkable formula in mathematics, for it links five fundamental mathematical constants: 0, 1, π, e, and i.
值得注意的是,欧拉在复分析中的公式 e i x = cos ⁡ ( x ) + i sin ⁡ ( x ) e^{ix} = \cos(x) + i\sin(x) eix=cos(x)+isin(x),其中 “i” 是虚数单位,被誉为数学中最美丽的定理之一,因为它建立了指数函数和三角函数之间的深刻关系。这个公式是欧拉恒等式的一个特例,欧拉恒等式通常被认为是数学中最令人惊叹的公式,因为它连接了五个基本的数学常数:0、1、π、e 和 i。

Euler’s work on the number “e” helped develop the logarithms field, which revolutionized computation. He also made significant contributions to number theory and was instrumental in the development of the [Euler–Maclaurin formula](https://en.wikipedia.org/wiki/Euler –Maclaurin_formula), which connects discrete sums and continuous integrals.
欧拉对 “e” 的研究推动了对数领域的发展,这彻底改变了计算方式。他还对数论做出了重要贡献,并在 欧拉-麦克劳林公式 的发展中发挥了关键作用,该公式连接了离散求和与连续积分。

In addition to his mathematical genius, Euler possessed remarkable perseverance. Illustrated in the continuation of his work despite losing his eyesight later in life. This did not hinder his productivity; in fact, some of his most significant work was done during this period of his life.
除了他的数学天赋外,欧拉还具有非凡的毅力。尽管他在晚年失去了视力,但他仍然继续他的工作。这并没有阻碍他的生产力;事实上,他生命中的一些最重要的工作是在这一时期完成的。

Euler’s legacy is celebrated not only in the numerous theorems named after him but also in the way his work laid the foundation for much of contemporary mathematics and physics. His enduring influence is a testament to the power of human curiosity and intellect, and his name, inseparably linked with “e,” continues to inspire mathematicians and scientists around the world.
欧拉的遗产不仅体现在以他的名字命名的众多定理中,还体现在他的工作为现代数学和物理学奠定了基础。他持久的影响力证明了人类好奇心和智慧的力量,他的名字与 “e” 密不可分,继续激励着世界各地的数学家和科学家。

“E” in Everyday Life

日常生活中的 “e”

The mathematical constant “e” surfaces in many aspects of our daily experiences, often in ways we might not immediately recognize. For instance, the exponential growth of finances that “e” models is not just a concept for bankers and investors. When a population of bacteria grows in a petri dish, or when a viral video’s view count increases rapidly, they follow patterns describable by “e.”
数学常数 “e” 在我们的日常生活中随处可见,尽管我们可能没有立即意识到它。例如,“e” 所模拟的金融指数增长不仅仅是银行家和投资者的概念。当培养皿中的细菌群落增长,或者当一个病毒视频的观看次数迅速增加时,它们都遵循可以用 “e” 描述的模式。

Take the cooling of your morning coffee, for example. The rate at which it cools down and loses heat to the surrounding air can be modeled using natural logarithms based on “e”. Similarly, when you charge your smartphone, the rate at which the battery reaches full capacity follows a logarithmic curve that eventually plateaus as the charge completes, which is an application of “e” in the charging algorithm.
以你早晨的咖啡冷却为例。它冷却并失去热量的速率可以用基于 “e” 的自然对数来模拟。同样,当你给智能手机充电时,电池达到满容量的速率遵循一条最终趋于平稳的对数曲线,这是 “e” 在充电算法中的应用。

In nature, “e” is observable in the way leaves are arranged on a stem or the way a population of animals grows within an ecosystem. These are not linear processes but follow patterns that can be modeled using equations involving “e”, showing exponential growth under ideal conditions. For instance, the number of fish in a steadily reproducing population or the way a forest expands can be estimated using “e” if we assume unlimited resources and no predation.
在自然中,“e” 可以在叶子在茎上的排列方式或动物群落在生态系统中的增长方式中观察到。这些不是线性过程,而是遵循可以用涉及 “e” 的方程模拟的模式,在理想条件下显示出指数增长。例如,如果假设资源无限且没有捕食,可以用 “e” 来估计稳定繁殖的鱼群的数量或森林的扩张方式。

Even in the vastness of space, “e” helps astronomers understand the luminosity and growth of certain types of stars, as well as the distribution of galaxies in the universe. This distribution often follows a Poisson process, which is deeply linked to “e”.[5]
即使在浩瀚的宇宙中,“e” 也帮助天文学家理解某些类型恒星的光度和增长,以及宇宙中星系的分布。这种分布通常遵循一个 泊松过程,这与 “e” 有着深刻的联系。

Moreover, “e” governs the decay processes as well. For instance, the decay of radioactive substances, an essential concept in both medicine and archaeology, follows a pattern described by “e”. Radiocarbon dating, which allows us to estimate the age of archaeological finds, is based on the exponential decay equation involving “e”.
此外,“e” 也支配着衰变过程。例如,放射性物质的衰变是医学和考古学中的一个重要概念,它遵循由 “e” 描述的模式。放射性碳定年法使我们能够估计考古发现的年代,它基于涉及 “e” 的指数衰减方程。

These examples show that “e” is a silent contributor to many natural phenomena and technologies that we interact with and benefit from daily. It is a thread woven into the fabric of life, as omnipresent and fundamental as the more widely recognized constant, Pi.
这些例子表明,“e” 是许多我们日常互动和受益的自然现象和技术的幕后贡献者。它像 π 一样,是生活中无处不在且基础性的一部分。

The Story of Pi and “e”

π 和 “e” 的故事

Pi and “e” represent fundamental constants that have shaped the understanding of our world through mathematics. Pi’s story is well-known, tracing back to ancient civilizations that recognized its significance in circular measurements. For example, the Great Pyramid at Giza, with its perimeter-to-height ratio approximating 2 π 2\pi 2π, suggests that the ancient Egyptians may have had an understanding of this constant.
π 和 “e” 是通过数学塑造我们对世界的理解的基本常数。π 的故事广为人知,可以追溯到认识到其在圆周测量中的重要性的古代文明。例如,吉萨大金字塔的周长与高度之比近似为 2 π 2\pi 2π,这表明古埃及人可能已经对这个常数有所了解。

On the other hand, “e” made a later entrance with the work of John Napier on logarithms, which was a breakthrough in simplifying complex calculations. Euler’s identification of “e” as a constant and its subsequent use in calculating compound interest, modeling population growth, and defining the nature of logarithms mark just a few of the ways “e” has been pivotal in the advancement of mathematics alongside Pi.
另一方面,“e” 是随着 约翰·纳皮尔 对对数的研究而较晚出现的,这在简化复杂计算方面是一个突破。欧拉将 “e” 确定为一个常数,并将其用于计算复利、模拟人口增长以及定义对数的本质,这只是 “e” 在与 π 并肩推动数学进步的几个关键方面。

Understanding “e” Without a Math Degree

没有数学学位也能理解 “e”

“Euler’s number,” or “e,” is not just for mathematicians—it’s a concept with real-world implications that can be grasped through everyday experiences. For instance, when we talk about the interest rates on a loan, we’re discussing concepts that hinge on the principles of “e.” If you’re tracking the performance of your retirement fund, the projections are likely using “e” to model growth over time. This constant also describes natural phenomena such as the rate at which a rumor spreads through a population or how a viral video gains popularity online—processes that can be understood in terms of exponential functions and “e.”
“欧拉数” 或 “e” 并非仅限于数学家使用——它是一个具有现实世界意义的概念,可以通过日常体验来理解。例如,当我们谈论贷款的利率时,我们正在讨论依赖于 “e” 原理的概念。如果你正在跟踪你的退休基金的表现,预测很可能会使用 “e” 来模拟随时间的增长。这个常数还描述了自然现象,例如谣言在人群中的传播速度,或者病毒视频在网上获得人气的速度——这些过程可以用指数函数和 “e” 来理解。

The Irrational Beauty of “e”

“e” 的无理之美

The infinite and non-repeating nature of “e” makes it a fascinating subject not just in mathematics, but also in the broader context of understanding patterns and growth in the natural world. Its presence is felt in the spiraling patterns of shells and galaxies, which can be described by logarithmic spirals involving “e.” In the arts, the concept of the “golden ratio,” often associated with aesthetic beauty, is closely related to the Fibonacci sequence, which, as it progresses, approaches an exponential curve defined by “e.” The irrationality of “e” thus transcends mathematics, influencing art, design, and our general quest for patterns in life and the universe.
“e” 的无限且不重复的特性不仅在数学中,而且在更广泛的自然世界中的模式和增长理解中,都是一个引人入胜的主题。它存在于贝壳和星系的螺旋模式中,这些模式可以用涉及 “e” 的对数螺旋来描述。在艺术领域,“黄金比例” 的概念通常与审美有关,它与斐波那契数列密切相关,而斐波那契数列随着进展逐渐接近由 “e” 定义的指数曲线。“e” 的无理性超越了数学,影响了艺术、设计以及我们对生活和宇宙中模式的探索。

Why “e” Deserves More Fame

为什么 “e” 应该获得更多的关注

In the realm of mathematics and beyond, “e” emerges not just as a number but as a cornerstone of natural laws and human comprehension. Its mathematical elegance and profound utility are woven into the very fabric of the world we experience. From the exponential growth of our investments to the decay of radioactive materials, from the spread of a forest to the reach of a viral online post, “e” is a silent yet ubiquitous force.
在数学领域以及更广泛的世界中,“e” 不仅仅是一个数字,而是自然法则和人类理解的基石。它的数学之美和深远的实用性融入了我们所经历的世界的每一个角落。从我们投资的指数增长到放射性物质的衰变,从森林的蔓延到病毒式在线帖子的传播,“e” 是一种无声却无处不在的力量。

It’s in the growth curves of our economies and the spiraling of galaxies that we witness the subtle but pervasive influence of “e”. The constant’s ability to encapsulate change—be it growth or decay—makes it a powerful tool for understanding and navigating the complexities of our world. Its applications are as boundless as those of pi, deserving equal billing for its role in our equations and models.
在我们经济的增长曲线和星系的螺旋中,我们可以看到 “e” 的微妙但普遍的影响。这个常数能够概括变化——无论是增长还是衰变——这使它成为理解和应对我们世界复杂性的强大工具。它的应用范围和 π 一样无边无际,值得在我们的方程和模型中获得同等的地位。

“E” deserves more fame because it helps unlock the mysteries of both the universe and everyday phenomena. It is as essential as pi in describing the circles of a planet’s orbit as it is in predicting the growth of a population or the interest on a loan. For its omnipresence in processes that are fundamental to life, technology, and the universe itself, “e” warrants a place of honor alongside pi. This recognition is not just for the sake of mathematical completeness, but for the enrichment of our understanding of the patterns that underpin our existence.
“e” 应该获得更多的关注,因为它有助于解开宇宙和日常现象的奥秘。它在描述行星轨道的圆周方面和预测人口增长或贷款利息方面一样重要。由于 “e” 在对生命、技术和宇宙本身都至关重要的过程中无所不在,它应该与 π 并列获得荣誉。这种认可不仅仅是为了数学的完整性,而是为了丰富我们对支撑我们存在的模式的理解。

Conclusion

总结

Although there is a obvious debate of semantics with a word like “important,” it is safe to say that “e” stands tall alongside zero, one, pi, and the imaginary unit “i” in the pantheon of mathematics. Its omnipresence in science, finance, and statistics is a clear affirmation of its indispensable role in our understanding of the world. “e” is not just a number; it’s a fundamental constant, as integral to the universe’s language as pi itself—a fact beyond doubt.
尽管对于 “重要” 这个词存在明显的语义争论,但可以说 “e” 与零、一、π 和虚数单位 “i” 一样,在数学的殿堂中占据着重要地位。它在科学、金融和统计学中的无处不在,清楚地证明了它在我们理解世界中不可或缺的作用。“e” 不仅仅是一个数字,它是一个基本常数,与 π 一样,是宇宙语言的一部分,这是一个不容置疑的事实。

Article Citations

文章引用

  1. e is everywhere. Nature.com.
  2. e(mathematical constant). Wikipedia.org.
  3. Radiocarbon Dating. Wikipedia.org.
  4. Leonhard Euler. Wikipedia.org.
  5. The Expanding Search for Homogeneity. Caltech.edu.

Euler’s number: Euler’s E: The Mathematical Marvel That Defines Our World

欧拉数:欧拉 E:定义我们世界的数学奇迹

Updated: 02 Apr 2025

Pitch Deck or business plan
Business Email submissions will be answered within 1 or 2 business days. Personal Email submissions will take longer

1. Introduction to Euler’s number

欧拉数简介

在这里插入图片描述

Euler’s number, also known as Euler’s E, is a mathematical constant that plays an essential role in many branches of mathematics, science, and engineering. It is a fascinating and versatile number that can describe everything from the growth of populations to the movement of particles in space. But what is Euler’s number, and why is it so important? In this section, we will explore the origins of Euler’s number, its significance, and its applications.
欧拉数,也称为欧拉的 E,是一个在数学、科学和工程学的许多分支中扮演着重要角色的数学常数。它是一个迷人且多功能的数字,可以描述从人口增长到空间中粒子运动的一切。但什么是欧拉数,它为什么如此重要呢?在这一部分,我们将探索欧拉数的起源、重要性和应用。

  1. Euler’s number is a mathematical constant that is approximately equal to 2.71828 2.71828 2.71828. It was first introduced by the Swiss mathematician Leonhard Euler in the early 18th century. Euler discovered that this number appeared in many different mathematical formulas and had unique properties that made it a fundamental constant in mathematics.
    欧拉数是一个近似等于 2.71828 2.71828 2.71828 的数学常数。它是由瑞士数学家莱昂哈德·欧拉在 18 世纪初首次引入的。欧拉发现这个数字出现在许多不同的数学公式中,并且它具有独特的性质,使其成为数学中的一个基本常数。

  2. One of the essential properties of Euler’s number is that it is the base of the natural logarithm function. The natural logarithm is a fundamental mathematical function that describes the rate at which a quantity grows or decays over time. It is widely used in many fields, including finance, biology, physics, and engineering. The natural logarithm gives us a way to describe exponential growth and decay, which is essential in understanding many natural phenomena.
    欧拉数的一个基本性质是它是自然对数函数的底数。自然对数是一个基本的数学函数,它描述了一个量随时间增长或衰减的速率。它在许多领域都有广泛的应用,包括金融、生物、物理和工程。自然对数为我们提供了一种描述 指数增长和衰减 的方式,这对于理解许多自然现象至关重要。

  3. Another way of understanding Euler’s number is through the concept of compound interest. Suppose you invest 1 1 1 in a bank account that pays you an annual interest rate of 100 % 100\% 100%. At the end of the first year, you will have 2 2 2 in your account. However, if the interest is compounded continuously, you will have 2.71828 2.71828 2.71828 in your account at the end of the first year. This is because the formula for continuous compounding involves Euler’s number.
    理解欧拉数的另一种方式是通过复利的概念。假设你在银行存入 1 1 1 美元,年利率为 100 % 100\% 100%。第一年结束时,你的账户将有 2 2 2 美元。然而,如果利息是连续复利的,那么第一年结束时你的账户将有 2.71828 2.71828 2.71828 美元。这是因为连续复利的公式涉及欧拉数。

  4. Euler’s number also plays a crucial role in calculus, which is the branch of mathematics that deals with rates of change and slopes of curves. It appears in many different formulas in calculus, including the derivative of the exponential function, which is e x e^x ex. The derivative of this function is itself, which is a unique property of Euler’s number.
    欧拉数在微积分中也扮演着关键角色,微积分是研究变化率和曲线斜率的数学分支。它出现在微积分的许多不同公式中,包括指数函数的导数,即 e x e^x ex。这个函数的导数就是它自己,这是欧拉数的一个独特性质。

  5. Finally, Euler’s number has many applications in science and engineering. It appears in the equations that describe the behavior of many physical systems, including the movement of particles in space and the growth of populations. It is also used in electrical engineering to describe the behavior of circuits and in control systems to analyze the stability of feedback loops.
    最后,欧拉数在科学和工程学中有许多应用。它出现在描述许多物理系统行为的方程中,包括空间中粒子的运动和人口的增长。它还用于电气工程中描述电路的行为,以及在控制系统中分析 反馈环路的稳定性。

Euler’s number is a fascinating mathematical constant that has captured the imagination of generations of mathematicians and scientists. Its unique properties and wide range of applications make it a fundamental part of many fields of study, and its contribution to our understanding of the world around us cannot be overstated.
欧拉数是一个迷人的数学常数,它激发了几代数学家和科学家的想象力。它独特的性质和广泛的应用范围使其成为许多学科领域的一个基本部分,它对我们理解周围世界的贡献怎么强调都不过分。

2. Who is Leonhard Euler?

莱昂哈德·欧拉是谁?

在这里插入图片描述

Leonhard Euler was a Swiss mathematician, physicist, and astronomer who made significant contributions to many branches of mathematics, including calculus, number theory, topology, and graph theory. He was one of the most prolific mathematicians in history, publishing more than 800 800 800 books and papers during his lifetime. Euler is widely regarded as one of the greatest mathematicians of all time and is known for his deep understanding of mathematical concepts and his ability to develop powerful new mathematical tools.
莱昂哈德·欧拉是一位瑞士数学家、物理学家和天文学家,他在数学的许多分支中,包括微积分、数论、拓扑学和图论,都做出了重要贡献。他是历史上最高产的数学家之一,在他的一生中发表了超过 800 800 800 本书和论文。欧拉被广泛认为是历史上最伟大的数学家之一,他以对数学概念的深刻理解和开发强大新数学工具的能力而闻名。

  1. Euler’s Early Life and Education

    欧拉的早年生活和教育

    • Euler was born in Basel, Switzerland in 1707 1707 1707 and grew up in a family of mathematicians.
      欧拉于 1707 1707 1707 年出生于瑞士巴塞尔,成长在一个数学家的家庭中。

    • He received his education at the University of Basel, where he studied under Johann Bernoulli, one of the leading mathematicians of his time.
      他在巴塞尔大学接受教育,师从当时领先的数学家约翰·伯努利。

    • Euler showed exceptional talent in mathematics from a young age and began publishing papers on various topics while still a student.
      欧拉从小就展现出数学方面的非凡才能,并在还是学生的时候就开始发表关于各种主题的论文。

  2. Euler’s Contributions to Mathematics

    欧拉对数学的贡献

    • Euler made significant contributions to many areas of mathematics, including calculus, number theory, graph theory, and topology.
      欧拉在数学的许多领域都做出了重要贡献,包括微积分、数论、图论和拓扑学。

    • He developed many new mathematical tools and techniques, including the calculus of variations, the theory of complex numbers, and the Euler characteristic of a surface.
      他开发了许多新的数学工具和技术,包括变分法、复数理论和曲面的欧拉特征。

    • Euler also made important advances in the study of infinite series, developing the theory of convergent and divergent series and introducing the concept of the Euler-Mascheroni constant.
      欧拉还在无限级数的研究中取得了重要进展,发展了收敛级数和发散级数的理论,并引入了欧拉-马斯刻罗尼常数的概念。

  3. Euler’s Legacy

    欧拉的遗产

    • Euler’s work has had a profound influence on modern mathematics and science, and many of his ideas and concepts are still in use today.
      欧拉的工作对现代数学和科学产生了深远的影响,他的许多思想和概念至今仍在使用。

    • His work on complex numbers and the calculus of variations, for example, are essential tools in many areas of physics and engineering.
      例如,他在复数和变分法方面的工作是物理学和工程学许多领域的基本工具。

    • Euler is also remembered for his elegant and insightful proofs, which have inspired generations of mathematicians to this day.
      欧拉还因其优雅且富有洞察力的证明而被铭记,这些证明至今仍激励着一代又一代的数学家。

3. The discovery of Euler’s number

欧拉数的发现

在这里插入图片描述

The discovery of Euler’s number is a fascinating tale of mathematical discovery, spanning centuries and involving some of the greatest minds in history. It is a testament to the power of human curiosity and the unrelenting quest for knowledge. The concept of Euler’s number, also known as Euler’s constant or simply as e, was first introduced by Swiss mathematician Leonhard Euler in the early 18th century. Since then, it has become one of the most important mathematical constants, with applications in a wide range of fields, from finance and economics to physics and engineering.
欧拉数的发现是一个迷人的数学发现故事,跨越了几个世纪,涉及到了历史上一些最伟大的头脑。这是人类好奇心的力量和对知识不懈追求的证明。欧拉数的概念,也称为欧拉常数或简单地称为 e,是由瑞士数学家莱昂哈德·欧拉在 18 世纪初首次引入的。从那时起,它已经成为最重要的数学常数之一,在金融、经济、物理和工程等广泛领域都有应用。

  1. The history of Euler’s number: Euler’s number was first discovered by Leonhard Euler in the early 18th century. Euler was a prolific mathematician, with contributions to many different areas of mathematics. He is credited with the discovery of many important mathematical concepts, including the concept of e. Euler was able to derive the value of e by studying the properties of compound interest.
    欧拉数的历史:欧拉数是由莱昂哈德·欧拉在 18 世纪初首次发现的。欧拉是一位多产的数学家,对数学的许多不同领域都有贡献。他被认为发现了许多重要的数学概念,包括 e。欧拉通过研究复利的性质得出了 e 的值。

  2. The significance of Euler’s number: Euler’s number is a fundamental mathematical constant that appears in many different contexts. It is the base of the natural logarithm and is used to describe exponential growth and decay. It is also used in complex analysis, where it is used to define the exponential function. In finance, Euler’s number is used to calculate continuous compounding interest rates, which are used in many financial models.
    欧拉数的重要性:欧拉数是一个基本的数学常数,出现在许多不同的上下文中。它是自然对数的底数,用于描述指数增长和衰减。它还用于复分析中,用于定义指数函数。在金融领域,欧拉数用于计算连续复利利率,这些利率在许多金融模型中都有使用。

  3. Real-world applications of Euler’s number: Euler’s number has many practical applications in the real world. For example, it is used in the modeling of population growth and decay, and it is used in physics to describe wave functions. It is also used in engineering, where it is used to describe the behavior of vibrating systems. In computer science, it is used in the calculation of probabilities and in the design of computer algorithms.
    欧拉数的实际应用:欧拉数在现实世界中有许多实际应用。例如,它用于模拟人口增长和衰减,在物理学中用于描述波函数。它还用于工程学中,用于描述振动系统的行为。在计算机科学中,它用于计算概率和设计计算机算法。

  4. The beauty of Euler’s number: Euler’s number is a beautiful and elegant mathematical concept that has captivated mathematicians and scientists for centuries. Its ubiquity in the natural world and its importance in many different fields make it a truly remarkable constant. The elegance of e lies in its simplicity and its universality, making it a true marvel of mathematics.
    欧拉数的美:欧拉数是一个美丽而优雅的数学概念,几个世纪以来一直吸引着数学家和科学家。它在自然世界中的普遍存在以及在许多不同领域中的重要性,使它成为一个真正非凡的常数。e 的优雅在于它的简单性和普遍性,使它成为数学的一个真正奇迹。

4. What is Euler’s number?

什么是欧拉数?

在这里插入图片描述

Euler’s number, also known as Euler’s constant, is a mathematical constant that is derived from the natural logarithm. It is denoted by the letter ‘e’ and is approximately equal to 2.71828 2.71828 2.71828. This number has been a fascination for mathematicians for centuries, and it has a wide range of applications in various fields, including physics, engineering, and finance. In this section, we will delve deeper into Euler’s number, exploring both its mathematical properties as well as its real-world applications.
欧拉数,也称为欧拉常数,是一个从自然对数中导出的数学常数。它用字母 “e” 表示,近似等于 2.71828 2.71828 2.71828。这个数字几个世纪以来一直吸引着数学家,它在包括物理、工程和金融在内的各个领域都有广泛的应用。在这一部分,我们将深入探讨欧拉数,探索它的数学性质以及它在现实世界中的应用。

  1. The Origins of Euler’s Number

    欧拉数的起源

    Euler’s number was first introduced by the Swiss mathematician Leonhard Euler in the 18th century. Euler was investigating the properties of compound interest when he discovered that there was a natural logarithmic function that could be used to model the growth of a principal amount. This logarithmic function had a base of ‘e’, which Euler named in honor of Jacob Bernoulli, a fellow mathematician who had used the letter ‘e’ to represent a different constant in an earlier work.
    欧拉数是由瑞士数学家莱昂哈德·欧拉在 18 世纪首次引入的。欧拉在研究复利的性质时发现,有一个自然对数函数可以用来模拟 本金的增长。这个对数函数的底数是 “e”,欧拉以雅各布·伯努利的名字命名,雅各布·伯努利是一位数学家,他在早期的作品中用字母 “e” 表示一个不同的常数。

  2. The Properties of Euler’s Number

    欧拉数的性质

    One of the most fascinating properties of Euler’s number is its relationship with exponential functions. Specifically, the derivative of the exponential function e x e^x ex is itself e x e^x ex. This property has made Euler’s number a fundamental part of calculus, and it is used extensively in the study of differential equations. Additionally, Euler’s number is an irrational number, meaning that it cannot be expressed as a finite decimal or fraction.
    欧拉数最迷人的性质之一是它与指数函数的关系。具体来说,指数函数 e x e^x ex 的导数就是它自己 e x e^x ex。这一性质使欧拉数成为微积分的一个基本组成部分,并且在微分方程的研究中被广泛使用。此外,欧拉数是一个无理数,这意味着它不能表示为有限的小数或分数。

  3. Real-World Applications of Euler’s Number

    欧拉数在现实世界中的应用

    The applications of Euler’s number are vast and varied. In physics, it is used to model a wide range of phenomena, including radioactive decay, the motion of pendulums, and the behavior of electrons in quantum mechanics. In finance, Euler’s number is used extensively in the calculation of compound interest and the determination of optimal investment strategies. Even in everyday life, Euler’s number can be seen in the growth of populations, the spread of diseases, and the decay of materials.
    欧拉数的应用范围广泛且多样。在物理学中,它被用来模拟各种现象,包括放射性衰变、摆的运动以及量子力学中电子的行为。在金融领域,欧拉数被广泛用于 复利的计算 和 最优投资策略 的确定。即使在日常生活中,欧拉数也可以在人口增长、疾病传播和材料衰变中看到。

Euler’s number is a mathematical marvel that has captured the imagination of generations of mathematicians and scientists. Its unique properties and wide range of applications make it a fundamental part of many fields of study, and its contribution to our understanding of the world around us cannot be overstated.
欧拉数是一个数学奇迹,它激发了几代数学家和科学家的想象力。它独特的性质和广泛的应用范围使其成为许多学科领域的一个基本部分,它对我们理解周围世界的贡献怎么强调都不过分。

5. Why is Euler’s number important in mathematics?

为什么欧拉数在数学中很重要?

在这里插入图片描述

Euler’s number, also known as Euler’s constant or Euler’s E, is a mathematical constant that appears in various mathematical equations and has many applications in different fields such as physics, engineering, and finance. It is an irrational number with a value approximately equal to 2.71828 2.71828 2.71828. Euler’s number is important in mathematics because it plays a fundamental role in calculus, exponential growth and decay, and complex analysis.
欧拉数,也称为欧拉常数或欧拉的 E,是一个出现在各种数学方程中的数学常数,在物理、工程和金融等不同领域有许多应用。它是一个近似值为 2.71828 2.71828 2.71828 的无理数。欧拉数在数学中很重要,因为它在微积分、指数增长和衰减以及复分析中起着基本作用。

From a calculus perspective, the derivative of the natural logarithm of x x x is equal to 1 / x 1/x 1/x. The natural logarithm of a number is the logarithm to the base of Euler’s number. Therefore, the derivative of e x e^x ex is e x e^x ex, which means that the exponential function is its own derivative. This property makes Euler’s number the cornerstone of calculus and its applications.
从微积分的角度来看, x x x 的自然对数的导数等于 1 / x 1/x 1/x。一个数的自然对数是以欧拉数为底的对数。因此, e x e^x ex 的导数是 e x e^x ex,这意味着指数函数是它自己的导数。这一性质使欧拉数成为微积分及其应用的基石。

Here are some more reasons why Euler’s number is important in mathematics:
以下是欧拉数在数学中重要的其他一些原因:

  1. Exponential growth and decay: Exponential functions of the form f ( x ) = a x f(x) = a^x f(x)=ax and f ( x ) = e k x f(x) = e^{kx} f(x)=ekx are widely used to model growth and decay in various fields such as biology, economics, and physics. The value of Euler’s number e e e determines the rate of growth or decay, which is an essential parameter in many applications.
    指数增长和衰减:形式为 f ( x ) = a x f(x) = a^x f(x)=ax f ( x ) = e k x f(x) = e^{kx} f(x)=ekx 的指数函数被广泛用于模拟生物学、经济学和物理学等各个领域的增长和衰减。欧拉数 e e e 的值决定了增长或衰减的速率,这是许多应用中的一个关键参数。

  2. Complex analysis: Euler’s number is used in complex analysis to represent complex numbers in polar form. The formula e i θ = cos ⁡ ( θ ) + i sin ⁡ ( θ ) e^{i\theta} = \cos(\theta) + i\sin(\theta) eiθ=cos(θ)+isin(θ) is known as Euler’s formula and is used extensively in the study of complex analysis, which has many applications in physics, engineering, and computer science.
    复分析:欧拉数用于复分析中以极坐标形式表示复数。公式 e i θ = cos ⁡ ( θ ) + i sin ⁡ ( θ ) e^{i\theta} = \cos(\theta) + i\sin(\theta) eiθ=cos(θ)+isin(θ) 被称为欧拉公式,在复分析的研究中被广泛使用,复分析在物理学、工程学和计算机科学中都有许多应用。

  3. Probability and statistics: Euler’s number is used in probability and statistics to model continuous random variables using the probability density function f ( x ) = 1 2 π σ e − 1 2 ( x − μ σ ) 2 f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2} f(x)=2π σ1e21(σxμ)2, where μ \mu μ is the mean and σ \sigma σ is the standard deviation.
    概率论和统计学:欧拉数在概率论和统计学中用于使用概率密度函数 f ( x ) = 1 2 π σ e − 1 2 ( x − μ σ ) 2 f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2} f(x)=2π σ1e21(σxμ)2 来模拟 连续随机变量,其中 μ \mu μ 是均值, σ \sigma σ 是标准差。

  4. Financial mathematics: Euler’s number is used in finance to represent the continuous compounding of interest rates. The formula A = P e r t A = Pe^{rt} A=Pert is used to calculate the future value of an investment, where A A A is the future value, P P P is the principal, r r r is the interest rate, and t t t is the time period.
    金融数学:欧拉数在金融中用于表示利率的连续复利。公式 A = P e r t A = Pe^{rt} A=Pert 用于 计算投资的未来价值,其中 A A A 是未来价值, P P P 是本金, r r r 是利率, t t t 是时间段。

Euler’s number is a fascinating mathematical constant that has many applications in different fields. Its importance lies in its fundamental role in calculus, exponential growth and decay, complex analysis, probability and statistics, and financial mathematics.
欧拉数是一个迷人的数学常数,它在不同领域有许多应用。它的重要性在于它在微积分、指数增长和衰减、复分析、概率论和统计学以及金融数学中的基本作用。

6. Euler’s number in real-world applications

欧拉数在现实世界中的应用

在这里插入图片描述

Euler’s number, also known as Euler’s e, is a mathematical constant that appears in many different fields of study, including physics, engineering, economics, and finance. This number was first discovered by the Swiss mathematician Leonhard Euler in the 18th century and is defined as the limit of ( 1 + 1 / n ) n (1 + 1/n)^n (1+1/n)n as n n n approaches infinity. While the concept of this number may seem abstract, it is actually used in a variety of real-world applications that we encounter in our daily lives. Here are some examples:
欧拉数,也称为欧拉的 e,是一个在包括物理、工程、经济和金融在内的许多不同学科领域中都出现的数学常数。这个数字是由瑞士数学家莱昂哈德·欧拉在 18 世纪首次发现的,它被定义为 ( 1 + 1 / n ) n (1 + 1/n)^n (1+1/n)n n n n 趋向于无穷大时的极限。尽管这个数字的概念可能看起来很抽象,但实际上它被用于我们日常生活中遇到的各种实际应用中。以下是一些例子:

  1. Compound Interest: One of the most common applications of Euler’s number is in the calculation of compound interest. When calculating interest on a loan or investment, the interest is often compounded, meaning that the interest earned in each time period is added to the principal, and then the next interest calculation is based on the new total. Euler’s number can be used to calculate the amount of interest earned over time in these types of situations.
    复利:欧拉数最常见的应用之一是计算复利。在计算贷款或投资的利息时,利息通常是复利的,这意味着每个时间段内赚取的利息被加到本金上,然后下一个利息计算是基于新的总额。欧拉数可以用于计算这些情况下的利息随时间的累积金额。

  2. electrical engineering: In electrical engineering, Euler’s number is used to represent the relationship between voltage and current in a capacitor or inductor. This relationship is known as the reactance of the component, and it is dependent on the frequency of the electrical signal being used. By using Euler’s number, engineers can calculate the impedance of a circuit component, which is essential for designing and optimizing electrical systems.
    电气工程:在电气工程中,欧拉数用于表示电容器或电感器中电压和电流之间的关系。这种关系被称为元件的阻抗,它依赖于所使用的电信号的频率。通过使用欧拉数,工程师可以计算电路元件的阻抗,这对于设计和优化电气系统是必不可少的。

  3. Probability and Statistics: Euler’s number is also used in probability and statistics to model the distribution of random variables. The exponential distribution, which is commonly used in these fields, is defined using Euler’s number. This distribution is useful for modeling the time between events that occur at a constant rate, such as radioactive decay or the arrival of customers at a store.
    概率论和统计学:欧拉数还用于概率论和统计学中模拟 随机变量 的分布。在这些领域中常用的指数分布是使用欧拉数定义的。这种分布适用于模拟以恒定速率发生的事件之间的时间,例如放射性衰变或商店顾客的到来。

  4. Physics: In physics, Euler’s number is used to model a variety of phenomena, including the damping of oscillatory systems and the behavior of waves. For example, when a wave is reflected off a surface, the amplitude of the reflected wave is determined by the complex exponential function, which is based on Euler’s number.
    物理学:在物理学中,欧拉数用于模拟各种现象,包括振荡系统的阻尼和波的行为。例如,当一个波从一个表面反射时,反射波的振幅由基于欧拉数的复指数函数决定。

Euler’s number may seem like an abstract concept, but it is actually a fundamental part of many different fields of study and has numerous real-world applications. From finance to physics, this mathematical constant is essential for understanding and modeling many different phenomena.
欧拉数可能看起来像是一个抽象的概念,但实际上它是许多不同学科领域的一个基本组成部分,并且有许多实际应用。从金融到物理,这个数学常数对于理解和模拟许多不同现象是必不可少的。

7. How to calculate Euler’s number?

如何计算欧拉数?

在这里插入图片描述

Euler’s number, also known as Euler’s constant or Euler’s e, is a mathematical constant that is used in a wide range of mathematical applications. It is a fascinating number that appears in many fields of study, including calculus, probability theory, and complex analysis. In fact, it is considered one of the most important mathematical constants, and its value is approximately 2.71828 2.71828 2.71828. If you’re interested in learning how to calculate Euler’s number, then you’ve come to the right place. In this section, we will explore the different methods for calculating Euler’s number, including some of the most common formulas and techniques used by mathematicians.
欧拉数,也称为欧拉常数或欧拉的 e,是一个在广泛的数学应用中使用的数学常数。它是一个在包括微积分、概率论和复分析在内的多个学科领域中都出现的迷人数字。事实上,它被认为是最重要的数学常数之一,其值约为 2.71828 2.71828 2.71828。如果你有兴趣学习如何计算欧拉数,那么你来对地方了。在这一部分,我们将探索计算欧拉数的不同方法,包括数学家常用的公式和技术。

  1. The first method for calculating Euler’s number involves using the formula e = lim ⁡ n → ∞ ( 1 + 1 / n ) n e = \lim_{n \to \infty} (1 + 1/n)^n e=limn(1+1/n)n. This formula is based on the concept of limits, which is a fundamental concept in calculus. The formula essentially states that as n n n approaches infinity, the expression ( 1 + 1 / n ) n (1 + 1/n)^n (1+1/n)n approaches Euler’s number e e e. For example, if we set n n n equal to 100 100 100, we get e = ( 1 + 1 / 100 ) 100 e = (1 + 1/100)^{100} e=(1+1/100)100, which is approximately 2.70481 2.70481 2.70481.
    计算欧拉数的第一种方法是使用公式 e = lim ⁡ n → ∞ ( 1 + 1 / n ) n e = \lim_{n \to \infty} (1 + 1/n)^n e=limn(1+1/n)n。这个公式基于极限的概念,这是微积分的一个基本概念。这个公式本质上表明,当 n n n 趋向于无穷大时,表达式 ( 1 + 1 / n ) n (1 + 1/n)^n (1+1/n)n 趋向于欧拉数 e e e。例如,如果我们设 n n n 等于 100 100 100,我们得到 e = ( 1 + 1 / 100 ) 100 e = (1 + 1/100)^{100} e=(1+1/100)100,大约为 2.70481 2.70481 2.70481

  2. Another method for calculating Euler’s number involves using the formula e = ∑ n = 0 ∞ 1 / n ! e = \sum_{n=0}^{\infty} 1/n! e=n=01/n!. This formula is based on the concept of infinite series, which is another fundamental concept in calculus. The formula essentially states that Euler’s number e e e is equal to the sum of the infinite series 1 / 0 ! + 1 / 1 ! + 1 / 2 ! + 1 / 3 ! + … 1/0! + 1/1! + 1/2! + 1/3! + \dots 1/0!+1/1!+1/2!+1/3!+, where n ! n! n! represents the factorial of n n n. For example, if we add up the first 10 10 10 terms of this series, we get e = 1 + 1 + 1 / 2 + 1 / 6 + 1 / 24 + 1 / 120 + 1 / 720 + 1 / 5040 + 1 / 40320 + 1 / 362880 e = 1 + 1 + 1/2 + 1/6 + 1/24 + 1/120 + 1/720 + 1/5040 + 1/40320 + 1/362880 e=1+1+1/2+1/6+1/24+1/120+1/720+1/5040+1/40320+1/362880, which is approximately 2.71828 2.71828 2.71828.
    计算欧拉数的另一种方法是使用公式 e = ∑ n = 0 ∞ 1 / n ! e = \sum_{n=0}^{\infty} 1/n! e=n=01/n!。这个公式基于无限级数的概念,这是微积分的另一个基本概念。这个公式本质上表明,欧拉数 e e e 等于无限级数 1 / 0 ! + 1 / 1 ! + 1 / 2 ! + 1 / 3 ! + … 1/0! + 1/1! + 1/2! + 1/3! + \dots 1/0!+1/1!+1/2!+1/3!+ 的和,其中 n ! n! n! 表示 n n n 的阶乘。例如,如果我们加上这个级数的前 10 10 10 项,我们得到 e = 1 + 1 + 1 / 2 + 1 / 6 + 1 / 24 + 1 / 120 + 1 / 720 + 1 / 5040 + 1 / 40320 + 1 / 362880 e = 1 + 1 + 1/2 + 1/6 + 1/24 + 1/120 + 1/720 + 1/5040 + 1/40320 + 1/362880 e=1+1+1/2+1/6+1/24+1/120+1/720+1/5040+1/40320+1/362880,大约为 2.71828 2.71828 2.71828

  3. A third method for calculating Euler’s number involves using the exponential function e x e^x ex. This formula is based on the fact that the derivative of e x e^x ex is equal to e x e^x ex. In other words, the exponential function is its own derivative. Using this property, we can define Euler’s number e e e as the value of e 1 e^1 e1. For example, if we evaluate e 1 e^1 e1 using a calculator, we get e = 2.71828 e = 2.71828 e=2.71828.
    计算欧拉数的第三种方法是使用指数函数 e x e^x ex。这个公式基于 e x e^x ex 的导数等于 e x e^x ex 的事实。换句话说,指数函数是它自己的导数。利用这个性质,我们可以将欧拉数 e e e 定义为 e 1 e^1 e1 的值。例如,如果我们用计算器计算 e 1 e^1 e1,我们得到 e = 2.71828 e = 2.71828 e=2.71828

There are many different methods for calculating Euler’s number, each with its own advantages and disadvantages. Whether you’re a mathematician or simply curious about the world of mathematics, understanding how to calculate Euler’s number is an essential skill that will help you appreciate the beauty and complexity of this fascinating field of study.
有许多不同的方法可以计算欧拉数,每种方法都有其自身的优点和缺点。无论你是数学家还是仅仅对数学世界感兴趣,了解如何计算欧拉数是一项基本技能,它将帮助你欣赏这个迷人学科的美丽和复杂性。

8. Interesting facts about Euler’s number

关于欧拉数的有趣事实

在这里插入图片描述

Euler’s number is a fascinating mathematical constant that has a plethora of interesting facts associated with it. Whether you’re a mathematics enthusiast, a student, or simply curious about the world around you, it’s worth delving into the intricacies of Euler’s number and discovering what makes it so special. From its origins in calculus to its applications in modern-day finance, Euler’s number has captivated mathematicians, scientists, and researchers for centuries. Here are some interesting facts about Euler’s number that shed light on its significance and importance.
欧拉数是一个迷人的数学常数,与之相关的有趣事实众多。无论你是数学爱好者、学生,还是仅仅对周围的世界充满好奇,都值得深入研究欧拉数的复杂性,发现它为何如此特别。从它在微积分中的起源到它在现代金融中的应用,欧拉数几个世纪以来一直吸引着数学家、科学家和研究人员。以下是一些关于欧拉数的有趣事实,它们揭示了它的重要性和重要性。

  1. Euler’s number is an irrational number, which means that it cannot be expressed as a finite decimal or fraction. Instead, it is an infinite, non-repeating decimal that is often approximated to 2.71828 2.71828 2.71828.
    欧拉数是一个无理数,这意味着它不能表示为有限的小数或分数。相反,它是一个无限的、不重复的小数,通常近似为 2.71828 2.71828 2.71828

  2. The value of Euler’s number is derived from the mathematical function e x e^x ex, where e e e is the base of the natural logarithm and x x x is any real number. This function is used to model a wide range of phenomena, from population growth to radioactive decay.
    欧拉数的值来源于数学函数 e x e^x ex,其中 e e e 是自然对数的底数, x x x 是任意实数。这个函数被用来模拟从人口增长到放射性衰变的各种现象。

  3. Euler’s number is intimately connected to the concept of derivatives in calculus. In fact, the derivative of e x e^x ex is e x e^x ex itself, which makes it an incredibly useful tool for solving differential equations and other mathematical problems.
    欧拉数与微积分中的导数概念密切相关。事实上, e x e^x ex 的导数就是它自己 e x e^x ex,这使得它成为 解微分方程 和其他数学问题的一个极其有用的工具。

  4. Euler’s number appears in a variety of mathematical formulas and constants, including the Pythagorean theorem, the Gaussian integral, and the Riemann zeta function. It also plays a crucial role in complex analysis, a branch of mathematics that deals with functions of complex variables.
    欧拉数出现在许多数学公式和常数中,包括勾股定理、高斯积分和黎曼 ζ 函数。它还在复分析中起着关键作用,复分析是处理复变量函数的数学分支。

  5. Euler’s number has numerous applications in the real world, particularly in finance and economics. It is used to calculate interest rates, growth rates, and other financial indicators, and is a key component of the Black-Scholes model, which is used to price options and other derivatives.
    欧拉数在现实世界中有许多应用,特别是在金融和经济学中。它用于计算利率、增长率和其他金融指标,并且是布莱克-舒尔斯模型的关键组成部分,该模型用于 定价期权和其他衍生品。

  6. The number e e e is named after the Swiss mathematician Leonhard Euler, who first introduced it in the 18th century. Euler was one of the most prolific mathematicians of his time and made significant contributions to a wide range of fields, including number theory, graph theory, and calculus.
    数字 e e e 以瑞士数学家莱昂哈德·欧拉的名字命名,他于 18 世纪首次引入了这个数字。欧拉是他那个时代最多产的数学家之一,并且在包括数论、图论和微积分在内的广泛领域做出了重要贡献。

  7. Finally, it’s worth noting that Euler’s number is not just a mathematical curiosity; it’s a fundamental part of the fabric of our universe. From the growth of populations to the decay of radioactive isotopes, the properties of Euler’s number are woven into the very fabric of the natural world, making it one of the most important and fascinating constants in all of mathematics.
    最后,值得一提的是,欧拉数不仅仅是一个数学奇观,它是宇宙结构的一个基本部分。从人口增长到放射性同位素的衰变,欧拉数的性质被编织进了自然世界的结构之中,使它成为数学中最重要和最迷人的常数之一。

9. The significance of Euler’s number in modern mathematics

欧拉数在现代数学中的重要性

在这里插入图片描述

Euler’s number, also known as Euler’s constant or Euler’s E, is a mathematical constant that has been a subject of study and fascination by mathematicians for centuries. It is a fundamental constant that appears in many different areas of mathematics, science, and engineering, and it is considered one of the most important mathematical constants in modern mathematics. The significance of Euler’s number in modern mathematics is immense, and it has played a critical role in many important mathematical discoveries and applications.
欧拉数,也称为欧拉常数或欧拉 E,是一个几个世纪以来一直受到数学家研究和着迷的数学常数。它是一个在数学、科学和工程学的许多不同领域中都出现的基本常数,并且被认为是现代数学中最重要的数学常数之一。欧拉数在现代数学中的重要性是巨大的,它在许多重要的数学发现和应用中都发挥了关键作用。

From a mathematical point of view, Euler’s number is significant because it is the base of the natural logarithm function, which is central to many mathematical models and equations. It also appears in many other mathematical functions and formulas, such as the Gaussian integral, the Fourier transform, and the Laplace transform, to name just a few. Moreover, Euler’s number is deeply connected to complex numbers and is a central element of complex analysis, which is a branch of mathematics that deals with functions of complex variables.
数学的角度来看,欧拉数之所以重要,是因为它是自然对数函数的底数,而自然对数函数是许多 数学模型和方程 的核心。它还出现在许多其他数学函数和公式中,例如高斯积分、傅里叶变换和拉普拉斯变换,这只是其中的几个例子。此外,欧拉数与复数有着深刻的联系,并且是复分析的一个核心元素,复分析是处理复变量函数的数学分支。

From a scientific and engineering standpoint, Euler’s number is equally important. It appears in many different physical and natural phenomena, such as population growth, radioactive decay, and electrical circuits. In physics, Euler’s number is a key component of quantum mechanics and statistical mechanics, and it appears in many equations that describe the behavior of subatomic particles and systems. In engineering, Euler’s number is used to model and design a wide range of systems, from electrical circuits to fluid dynamics and control systems.
科学和工程学的角度来看,欧拉数同样重要。它出现在许多不同的物理和自然现象中,如人口增长、放射性衰变和电路。在物理学中,欧拉数是量子力学和统计力学的一个关键组成部分,并且出现在许多描述亚原子粒子和系统行为的方程中。在工程学中,欧拉数被用来模拟和设计从电路到流体动力学和控制系统等各种系统。

To fully appreciate the significance of Euler’s number in modern mathematics, it is helpful to delve into some of the specific areas where it plays a critical role. Here are a few examples:
为了充分理解欧拉数在现代数学中的重要性,有必要深入研究它在其中发挥关键作用的一些特定领域。以下是一些例子:

  1. Calculus: Euler’s number is a central element of calculus, which is a branch of mathematics that deals with rates of change and limits. In particular, it is used to define the exponential function, which is a fundamental concept in calculus and is used to model many different phenomena in science and engineering.

    微积分:欧拉数是微积分的一个核心元素,微积分是处理变化率和极限的数学分支。特别是,它被用来定义指数函数,这是微积分的一个基本概念,并且被用来模拟科学和工程学中的许多不同现象。

  2. Differential Equations: Euler’s number appears in many different types of differential equations, which are equations that describe the rate of change of a system. In particular, it appears in equations that describe exponential growth and decay, as well as in equations that describe oscillations and waves.

    微分方程:欧拉数出现在许多不同类型的微分方程中,这些方程描述了一个系统的变化率。特别是,它出现在描述指数增长和衰减的方程中,以及描述振荡和波的方程中。

  3. Probability: Euler’s number is used in probability theory to define the normal distribution, which is a probability distribution that describes many different natural phenomena, such as the distribution of heights or IQ scores in a population.

    概率论:欧拉数在概率论中用于定义正态分布,这是一种描述许多不同自然现象的概率分布,例如描述人群中的身高或智商分数分布。

Euler’s number is a mathematical marvel that defines our world in many different ways. It is a fundamental constant that appears in many different areas of mathematics, science, and engineering, and it has played a critical role in many important discoveries and applications. From calculus and differential equations to probability theory and physics, Euler’s number is an essential element of modern mathematics and a cornerstone of our understanding of the natural world.
欧拉数是一个数学奇迹,它在许多不同的方面定义了我们的世界。它是一个在数学、科学和工程学的许多不同领域中都出现的基本常数,并且在许多重要的发现和应用中都发挥了关键作用。从微积分和微分方程到概率论和物理学,欧拉数是现代数学的一个基本元素,也是我们对自然世界理解的一个基石。


数字背后的秘密:那些改变世界的基本数学常数

原创 遇见数学

2025 年 04 月 25 日 11:17 河南

什么是数学常数?

数学常数是指那些具有固定值、由明确无歧义定义的特殊数字。它们通常用特定符号(如字母)表示,或以数学家姓名命名,以便在不同的数学问题中方便引用。

这些常数在数学的众多领域都有出现,例如 π \pi π e e e 这两个著名常数就分别在几何、数论、统计学和微积分等多种数学分支中扮演着重要角色。

数学常数的来源多种多样。有些源于基本数学原理或某种内在性质,比如圆的周长与直径之比(即 π \pi π);而另一些则可能主要因历史原因而非其数学特性本身而闻名。那些最著名的常数已被历代数学家深入研究,并且它们的数值已被计算到惊人的精确度。

当前圆周率计算的世界纪录是 2024 年 6 月 28 日,由 Jordan Ranous、Kevin O’Brien 和 Brian Beeler 使用 y‑cruncher v0.8.3 在 Windows 10 (x64) 平台和 2×Intel Xeon Platinum 8592+(128 核、1 TiB 内存)上,用时 104 天,将圆周率计算至 202 , 112 , 290 , 000 , 000 202{,}112{,}290{,}000{,}000 202,112,290,000,000 位( ≈ 2.0211229 × 1 0 14 ≈2.0211229×10^{14} 2.0211229×1014)。

值得一提的是,所有拥有名称的数学常数都是可定义数(definable numbers),且通常也是可计算数(computable numbers)。值得注意的是,柴廷常数(Chaitin’s constant)是一个例外——它虽可定义却无法完全计算出来。

可定义数是指能够以有限的文字描述出来的数。可计算数是指可用有限次、会结束的算法计算到任意精确度的实数。

基础数学常数

下面介绍的这些常数,是大多数国家的高中教育阶段就应该会接触到的基本数学常数。

毕达哥拉斯常数 2 \sqrt{2} 2

 
图片

平方根 2,通常被称为“根号 2”或“毕达哥拉斯常数”,写作 2 \sqrt{2} 2 ,是唯一的正实数,它具有与自身相乘得到数字 2 的特性。更严格地说,它被称为 2 的主平方根,以区别于具有相同平方值但为负数的另一个平方根。

图片

从几何角度看, 2 \sqrt{2} 2 表示边长为 1 个单位长度的正方形对角线的长度,这一事实直接来源于勾股定理。这个数是一个无理数——这可能是人类历史上第一个被证明为无理数的数——同时它也是一个代数数。截至目前计算到的 50 位小数值为:

1.41421356237309504880168872420969807856967187537694 … 1.41421356237309504880168872420969807856967187537694\ldots 1.41421356237309504880168872420969807856967187537694(在 OEIS 数据库中的序列编号为 A002193)

遇见数学:人们常用分数 99 70 \frac{99}{70} 7099(≈1.41429)作为 2 \sqrt{2} 2 的快速近似值。这个分数之所以实用,是因为虽然它的分母仅为 70,但与精确值的误差小于万分之一(约为 1 0 − 5 10^{-5} 105)。对于大多数实际应用来说,这样的精度已经足够了。

2 \sqrt{2} 2 的连分数表示是周期性的,可以写作:

2 = 1 + 1 2 + 1 2 + 1 2 + ⋯ \sqrt{2} = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \cdots}}} 2 =1+2+2+2+111

这种优雅的周期性结构是无理数特有的,而且不同的无理数展现出不同的连分数模式。

阿基米德常数 π \pi π

 
图片

常数 π \pi π 在欧几里得几何中有着自然的定义:它是任意圆的周长与直径的比值。这个常数神奇地出现在数学的众多领域:例如,在高斯积分计算、复平面上的单位根分布,以及概率论中的柯西分布等。

π \pi π 的应用远不止于纯粹的数学。在物理学的无数公式中都能看到它的身影,许多物理常数的最自然表达式中都包含 π \pi π 或其倒数作为因子。例如,氢原子的基态波函数可以表示为:

ψ ( r ) = 1 π a 0 3 e − r / a 0 \psi(r) = \frac{1}{\sqrt{\pi a_0^3}} e^{-r/a_0} ψ(r)=πa03 1er/a0

其中 a 0 a_0 a0 表示玻尔半径(氢原子中电子轨道的基本尺度单位)。

从数学性质角度看, π \pi π 不仅是一个无理数,更是一个超越数(即它不是任何有理系数多项式方程的解),同时它也是一个代数周期数(algebraic period)——它可表示为某些代数函数在代数域上积分的值。

π \pi π 的近似值为:

3.14159265358979323846264338327950288419716939937510 … 3.14159265358979323846264338327950288419716939937510\ldots 3.14159265358979323846264338327950288419716939937510(OEIS 序列编号 A000796)

在实际应用中,分数 22 7 \frac{22}{7} 722(≈3.1429)和 355 113 \frac{355}{113} 113355(≈3.1415929)常被用作 π \pi π 的简便近似。特别是 355 113 \frac{355}{113} 113355 这个近似值非常精确,它的误差小于 1 0 − 7 10^{-7} 107,而且只需要记住分子和分母两个三位数。这个近似来自于我国数学家祖冲之(5 世纪)的成果,他给出的“密率”是当时世界上最精确的 π \pi π 值。

记忆和计算 π \pi π 的越来越多位数已成为一种世界性的竞技活动,吸引了众多数学爱好者和计算机专家的参与。

欧拉数 e e e

 
图片

欧拉数 e e e,也被称为自然对数的底或指数增长常数,在数学各领域中都有重要地位。它可以通过以下极限定义:

e = lim ⁡ n → ∞ ( 1 + 1 n ) n e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n e=nlim(1+n1)n

常数 e e e 与指数函数 e x e^x ex 有着内在的紧密联系,这个函数是唯一一个等于自身导数的函数(不考虑常数倍数)。

瑞士数学家雅各布·伯努利最早发现 e e e 出现在复利计算中:假设一个账户初始有 1 美元,以年利率 R R R 计息,那么当每年的计息期数趋向无穷大(这种情况称为连续复利)时,年末的金额将逼近 e R e^R eR 美元。

如果年利率为 100%,按一年计息一次,年末会有 2 美元;按两次计息,每次 50%,年末会有 2.25 美元;如果无限增加计息次数,趋向连续复利,年末金额会接近 e ≈ 2.718 … e \approx 2.718\ldots e2.718 美元。这就是为什么 e e e 被称为“自然增长率”的原因。

常数 e e e 在概率论中也有出人意料的应用。例如,考虑一台胜率为 1 n \frac{1}{n} n1 的老虎机,如果玩 n n n 次,那么当 n n n 很大时(比如一百万),一次都不中奖的概率会趋近于 1 e \frac{1}{e} e1(约 0.368)。

e e e 的另一个有趣应用,由雅各布·伯努利和法国数学家皮埃尔·雷蒙·德蒙莫尔共同发现,出现在所谓的“错位问题”或“帽子检查问题”中。想象 n n n 位客人参加派对,每人在入场时将帽子交给服务员,服务员随后随机将这些帽子放入标记好的格子中。德·蒙莫尔提出的问题是:所有帽子都不在正确位置的概率是多少?答案可以表示为:

p n = 1 − 1 1 ! + 1 2 ! − 1 3 ! + ⋯ + ( − 1 ) n 1 n ! p_n = 1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \cdots + (-1)^n \frac{1}{n!} pn=11!1+2!13!1++(1)nn!1

令人惊奇的是,当 n n n 趋向无穷时,这个概率趋近于 1 e \frac{1}{e} e1

同样是一个无理数和超越数,其数值约为:

2.71828182845904523536028747135266249775724709369995 … 2.71828182845904523536028747135266249775724709369995\ldots 2.71828182845904523536028747135266249775724709369995(OEIS 序列编号 A001113)

虚数单位 i i i

虚数单位(或单位虚数),用符号 i i i 表示,是一个将实数系统 R \mathbb{R} R 扩展到复数系统 C \mathbb{C} C 的关键数学概念。虚数单位的核心性质是 i 2 = − 1 i^2 = -1 i2=1。“虚数”这一术语之所以被创造,正是因为在实数范围内,没有任何数的平方等于负数。

实际上, − 1 -1 1 有两个复数平方根,分别是 i i i − i -i i,这与每个非零实数都恰好有两个复数平方根的事实是一致的(零是特例,它只有一个重复的平方根)。

虚数的引入解决了很多以前认为无解的问题,比如 x 2 + 1 = 0 x^2 + 1 = 0 x2+1=0 这样的方程。
复数系统的建立不仅丰富了数学理论,还在电气工程、量子力学等领域有着广泛应用。
例如,交流电路的分析和设计中,复数提供了表示阻抗和相位的强大工具。

在某些情境下,当符号 i i i 可能引起歧义或其他问题时,人们会使用 j j j 或希腊字母 ι \iota ι 作为替代。特别是在电气工程和控制系统工程中,虚数单位通常用 j j j 表示,因为 i i i 在这些领域常被用来表示电流(current)。

黄金分割率 ϕ \phi ϕ

正二十面体中的黄金矩形,图自维基

数字 ϕ \phi ϕ(读作“phi”),也称为黄金分割率,在几何学中频繁出现,尤其是在具有五角对称性的图形中。这个迷人的常数具有许多令人惊叹的性质:正五边形的对角线长度恰好是其边长的 ϕ \phi ϕ 倍;正二十面体的顶点可以看作是三个相互垂直的黄金矩形的顶点组合。

图片

黄金分割率与斐波那契数列有着密切关联。开普勒证明了连续斐波那契数的比值会逐渐趋近于 ϕ \phi ϕ。有趣的是,黄金分割率是所有无理数中连分数展开收敛速度最慢的数。正因如此,它是拉格朗日近似定理的一个极端案例,也是用于丢番图近似的赫尔维茨不等式(Hurwitz inequality)的极限情况。

这种缓慢收敛的特性可能解释了为什么接近黄金分割率的角度经常出现在植物的叶序排列中。
这种排列能够最大限度地确保每片新叶获得阳光,不被现有叶片完全遮挡。向日葵的种子排列、松果的鳞片分布等都遵循与黄金分割相关的斐波那契模式。

黄金分割率的数值约为:

1.61803398874989484820458683436563811772030917980576 … 1.61803398874989484820458683436563811772030917980576\ldots 1.61803398874989484820458683436563811772030917980576(OEIS 序列编号 A001622)

或者用精确表达式表示为:

ϕ = 1 + 5 2 \phi = \frac{1 + \sqrt{5}}{2} ϕ=21+5

黄金分割率在艺术、建筑和设计中也有广泛应用,许多人认为符合这一比例的构图具有特殊的美学吸引力,虽然这一观点尚存争议。

最后送上一张关于数学常数的网络趣图,望大家会心一笑。

图片

原内容及图片源自维基百科,遵循 CC BY-SA 4.0 协议。

原文:https://en.wikipedia.org/wiki/Mathematical_constant

翻译:【遇见数学】译制,并补充部分内容/图片


via:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值