LLM激活稀疏性加速

本文探讨了在大型语言模型中如何通过利用Contextualsparsity和ProSparse方法,特别是ReLU激活函数的稀疏性,以及正则化技术来提高效率。文章强调了稀疏性对矩阵乘法运算的加速作用,以及特殊算子在内存限制下的有效推理时间优化。
摘要由CSDN通过智能技术生成

相关工作

PowerInfer-2: Fast Large Language Model Inference on a Smartphone

Turbo Sparse: Achieving LLM SOTA Performance with Minimal Activated Parameters

Deja vu Contextual sparsity for efficient llms at inference time

LLM in a flash Efficient Large Language Model Inference with Limited Memory

ReLU Strikes Back Exploiting Activation Sparsity in Large Language Models

ReLU2 Wins: Discovering Efficient Activation Functions for Sparse LLMs

ProSparse Introducing and Enhancing Intrinsic Activation Sparsity within Large Language Models

ProSparse 这里展示了两种稀疏方式:向前和向后的稀疏性。

因为ws结果是稀疏的,w1也可以根据ws结果,也就是根据输出来进行稀疏。此外,w2根据输入进行稀疏。

ProSparse把激活函数替换为Relu后,采用一些特殊训练技巧,对激活采用正则化,从而获得更高的稀疏性和精度。

当然,真正要基于稀疏性获得加速,依赖于特殊的矩阵乘算子实现,该文章分别提供了输出和输入稀疏加速的矩阵乘实现。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Luchang-Li

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值