人脸识别——脸部属性辅助(特征融合)

本文介绍一种新型深度学习框架,通过预测面部属性并将其作为软模态增强人脸识别精度。该框架包含两个CNN分支,分别用于属性预测和人脸识别,最终通过Kronecker product融合提升识别效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《A Deep Face Identification Network Enhanced by Facial Attributes Prediction》
  • 2018,Fariborz Taherkhani, Nasser M. Nasrabadi, Jeremy Dawson

1.引言:

本文提出了一种新的端到端的深度学习框架:预测面部属性和利用它作为一种软模态(soft modality)去提升人脸识别的表现。
组成: 卷积神经网络(CNNs)输出两个分支,第一个分支预测面部属性,第二个分支进行人脸识别,最后融合预测的属性和脸部特征 去提升人脸识别的表现。
作者展示了一些软的生物信息(soft biometric information),e.g.:年龄和性别它们本身在人脸识别上不具备足够的区分力,但能为其它主要的信息(人脸特征)提供互补的信息。

属性预测的方法通常被划分成 全局(global) 和 局部(local)的方式:
Local methods通常由三部分组成:1.检测目标的不同部位,2.提取每个部位的特征,3.将这些特征进行合并,训练分类器。
Global approaches,:从整张图像提取特征,然后训练分类器。

本文的主要贡献:
1)本文设计了一种新的端到端的CNN结构,学习去预测人脸属性同时进行人脸验证。
2)相比于已经存在的多任务方法仅仅使用共享的CNN特征去同时训练两种任务,本文使用特征级进行融合的方法利用人脸属性去提高人脸识别的准确率。

2.网络结构:

Facial Attributes Prediction 和 Face Identification 联合结构
在这里插入图片描述
net@1使用VGG19结构,最后接了一个global average pooling层(GAP:减少融合的特征维度)。
net@2划分成两个分支同时进行训练。两个分支由两个全连接层(FC)组成,Fc1 和 F c ′ 1 Fc{}'1 Fc1由4096个单元组成,下一层是FC层同softmax操作组成,进行预测。
branch@1进行属性预测任务,最后一个FC层输出且执行softmax操作之前和GAP层的结果采用Kronecker product(克罗内克积) 进行融合,最后融合的层去训练branch@2进行人脸识别任务。

3.Fusion Layer on Facial Attributes and Face Modalities

以前,多模态融合的方法通常使用 特征连接(feature concatenation),本文使用Kronecker
Product来融合人脸属性特征和人脸特征。
假设v和u是人脸属性和人脸的特征向量,两个向量的Kronecker product被定义为:
在这里插入图片描述

4.训练和测试

net@1采用ImageNet数据集上的预训练模型,在CASIA-Web Face数据集进行fine tune。
CASIA-Web Face 包含10,575 subjects and 494,414 images.
在CelebA dataset进行人脸属性测试,CelebA是一个大型的、注释丰富的面部属性数据集,包含超过200K个名人图像,每个名人图像用40个面部属性标记。本文使用图像的8000个身份进行训练和剩余的1000个身份进行测试。在MegaFace进行人脸识别测试,MegaFace包含690K个人无约束姿势、表情、照明和曝光的1M图像。

Evaluation metrics:
本文在MegaFace数据集上评估了模型的人脸识别性能,在CelebA数据集上评估了模型的人脸属性预测性能。MagaFace数据集没有人脸属性标注。网络进行预测人脸属性,然后进行人脸识别。
Face Identification(人脸识别):我们计算gallery集合中的每个图像与probe集合中的给定图像之间的相似度,然后根据获得的相似度对这些图像进行排序。
在这里插入图片描述
Facial Attribute Prediction:我们利用人脸属性作为一种辅助信息来提升人脸识别的表现。人脸属性应该是不变的属性,同一个人在不同的场景持有相同的属性。Eg:gender, nose and lips shapes。然而, glasses, mustaches, or beards 是一个人很容易改变的属性。
CelebA 数据集中的身份面部属性如下:narrow eyes, big nose, pointy nose, chubby, double chin, high cheekbones, male, bald, big lips and oval face .
在这里插入图片描述

总结:本文提出了一种端到端的深度网络结构去同时进行人脸属性预测和身份识别。


注:博众家之所长,集群英之荟萃。

在这里插入图片描述

### STM32 实现人脸识别门禁系统的方案 #### 1. 系统概述 STM32实现的人脸识别门禁系统是一种智能化的安全解决方案,能够自动识别并验证进入者的身份。该系统通常由以下几个核心组件构成: - **主控制器**:STM32微控制器作为整个系统的控制中心。 - **图像采集设备**:用于捕捉进出人员的脸部图片或视频流。 - **通信接口**:负责与其他外部设备(如PC端服务器)之间的数据交换。 - **执行机构**:比如电磁锁或其他形式的机械装置来开启/关闭通道。 #### 2. 软件框架构建 为了使STM32支持复杂的人脸检测功能,一般会选择合适的第三方库来进行辅助开发。例如,在某些案例中采用了OpenCV这样的开源计算机视觉工具包[^1];而在其他情况下,则可能依赖于厂商提供的专用函数库,像正点原子所提供的`ATKFREC.lib`静态链接库文件就非常适合快速集成到项目当中去[^2]。 对于更高级的应用场景而言,还可以考虑引入专门针对嵌入式平台优化过的轻量化模型,从而确保即使是在资源受限环境下也能流畅运行高效的AI算法。 #### 3. 数据处理流程说明 当有人接近安装有此类系统的入口处时,摄像头会立即启动拍摄模式并将获取的画面传递给STM32处理器进行初步筛选——即判断画面内是否存在可辨认的人类面部特征。一旦确认存在目标对象之后,便会进一步调用人脸对比服务以确定此人是否属于预先注册过的信息列表之中。如果匹配成功,则允许通行并向用户反馈开门成功的消息;反之亦然。 值得注意的是,在实际部署过程中还需要考虑到诸如光照条件变化、角度偏差等因素可能会给人脸抓拍带来的影响,因此建议采取多帧融合技术或是增加额外传感器协助定位等方式提高准确性。 #### 4. 用户界面设计考量 除了后台逻辑之外,良好的前端展示同样重要。为此,开发者们往往会精心打造一套易于操作且直观易懂的操作面板供管理人员日常维护之用。这不仅限于简单的状态监视窗口,还包括但不限于新增删除记录条目、调整参数设置等功能选项。此外,考虑到不同用户的个性化需求差异较大,所以尽可能提供灵活定制化的UI模板也是十分必要的。 #### 5. 安全性和隐私保护措施 鉴于涉及到个人敏感信息存储与传输环节的存在,所以在规划之初就必须充分重视起安全防护机制建设工作。一方面要加密所有涉及私密资料的部分,另一方面也要严格遵循当地法律法规关于公民权利保障的相关规定,防止发生任何不当泄露事件的发生。 ```c // 示例代码片段:初始化串口通信配置 void UART_Init(void){ USART_InitTypeDef USART_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE); GPIO_PinRemapConfig(GPIO_Remap_USART1, ENABLE); GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9 | GPIO_Pin_10; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(GPIOA, &GPIO_InitStructure); USART_InitStructure.USART_BaudRate = 115200; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No ; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx; USART_Init(USART1,&USART_InitStructure); } ```
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Peanut_范

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值