In mathematics, the nth harmonic number is the sum of the reciprocals of the first n natural numbers:
In this problem, you are given n, you have to find Hn.
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n ≤ 108).
For each case, print the case number and the nth harmonic number. Errors less than 10-8 will be ignored.
12
1
2
3
4
5
6
7
8
9
90000000
99999999
100000000
Case 1: 1
Case 2: 1.5
Case 3: 1.8333333333
Case 4: 2.0833333333
Case 5: 2.2833333333
Case 6: 2.450
Case 7: 2.5928571429
Case 8: 2.7178571429
Case 9: 2.8289682540
Case 10: 18.8925358988
Case 11: 18.9978964039
Case 12: 18.9978964139
调和级数求和。如果直接求的话会超时。直接打表的话会超内存。我们可以采取一种折中的方法,每100个数存一下,这样下面最多只需要遍历99次。
代码:
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
double sum[1000005];
int main()
{
double s=0;
sum[0]=0;
for(int i=1;i<=1e8;i++)
{
s+=1.0/i;
if(i%100==0)
{
sum[i/100]=s;
}
}
int n,cas;
scanf("%d",&cas);
for(int tt=1;tt<=cas;tt++)
{
scanf("%d",&n);
double ans=sum[n/100];
for(int i=(n/100)*100+1;i<=n;i++)
{
ans+=1.0/i;
}
printf("Case %d: %.10lf\n",tt,ans);
}
return 0;
}
还有一种更加玄学的解法。
知识点:
调和级数(即f(n))至今没有一个完全正确的公式,但欧拉给出过一个近似公式:(n很大时)
f(n)≈ln(n)+C+1/(2*n)
欧拉常数值:C≈0.57721566490153286060651209
c++ math库中,log即为ln。
n很小时直接求,此时公式不是很准。
代码:
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
const double r=0.57721566490153286060651209; //欧拉常数
double a[10000];
int main()
{
a[1]=1;
for (int i=2;i<10000;i++)
{
a[i]=a[i-1]+1.0/i;
}
int n;
cin>>n;
for (int kase=1;kase<=n;kase++)
{
int n;
cin>>n;
if (n<10000)
{
printf("Case %d: %.10lf\n",kase,a[n]);
}
else
{
double a=log(n)+r+1.0/(2*n);
//double a=log(n+1)+r;
printf("Case %d: %.10lf\n",kase,a);
}
}
return 0;
}