5分钟理解transformer模型位置编码

Bert模型是自然语言处理方面里程碑式的进步,其核心是transformer层, 而transformer采用自注意力编码器摒弃了循环网络,循环网络天生的顺序信息在自注意力编码器中没有了,而语言往往是顺序不同意思相差很大。所以transformer的作者设计了一种三角函数位置编码方式,为每个不同位置的token单独生成一个位置向量(或者位置嵌入,即position embedding,缩写为PE)。下面的公式是位置编码的公式,但是论文及网上其他文章对公式解释不是很清楚,所以我在此采用例子来帮助初学者理解。

式中pos为token在序列中的位置号码,它的取值是0到序列最大长度max_que_length-1之间的整数。比如“[cls] 我 爱 中 华 [sep]”是6个token组成的序列,[cls]的pos值为0,“我”的pos值为1,“爱”的pos为2,“中”为3,“华”为4,'[sep]'为5 。bert base最大长度max_que_length是512,pos取值还能一直到511。当然如果序列真实长度小于最大长度时,后面的位置号没有意义,最终会被mask掉。

dmodel是位置向量的维度,与整个模型的隐藏状态维度值相同,这解释了为什么起dmodel这个名字,这个维度在bert base模型里设置为768。

i 是从0到dmodel/2-1之间的整数值,即0,1,2,...383。

2i  是指向量维度中偶数维࿰

### Transformer模型位置编码的作用和实现方法 #### 作用 Transformer模型的核心机制基于自注意力(Self-Attention),而这种机制本质上是对输入序列中的各个Token之间的关系建模,而不考虑它们的实际顺序。因此,为了使模型能够理解序列数据中的位置信息,必须显式地引入一种机制来表示这些位置特征。位置编码的引入正是为了解决这一问题[^1]。 具体而言,位置编码的主要功能是赋予模型关于序列中各Token相对或绝对位置的信息,从而帮助其学习到更丰富的上下文依赖关系。如果没有这样的编码,即使是最优设计的Transformer架构也无法有效地区分同一序列的不同排列形式[^2]。 #### 实现方式 目前主流的位置编码方案可以分为两大类:**绝对位置编码** 和 **相对位置编码**。 ##### 绝对位置编码 这是最常见的一种实现方式,在原始论文《Attention is All You Need》中被采用并广泛沿用至今。它的核心思想是以某种固定模式将位置信号嵌入到输入向量之中。通常情况下,会利用正弦函数与余弦函数生成一组周期性的数值作为特定位置上的编码值: \[ PE_{(pos, 2i)} = \sin\left(\frac{position}{10000^{2i / d}}\right), PE_{(pos, 2i+1)} = \cos\left(\frac{position}{10000^{2i / d}}\right), \] 其中 \( pos \) 表示当前单词所在的位置索引;\( i \) 是维度编号;\( d \) 则代表整个embedding空间的总维数。上述公式的优点在于不仅简单高效而且具备良好的泛化能力——即便遇到训练集中未曾见过的新长度句子也能顺利工作。 以下是Python代码片段展示如何计算该种类型的Positional Encoding: ```python import numpy as np import torch def get_position_encoding(seq_len, embed_dim): pe = torch.zeros(seq_len, embed_dim) position = torch.arange(0, seq_len).unsqueeze(1) div_term = torch.exp(torch.arange(0, embed_dim, 2) * -(np.log(10000.0) / embed_dim)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) return pe.unsqueeze(0) seq_length = 50 embed_dimension = 64 pe_matrix = get_position_encoding(seq_length, embed_dimension) print(pe_matrix.shape) # Output should be (1, 50, 64) ``` ##### 相对位置编码 另一种思路则是改进原有的多头注意机制本身,使其可以直接感知两个token间的距离差异而非单纯依靠预设好的静态表征。这类技术往往更加灵活复杂但也可能带来额外开销。例如Vaswani等人提出的版本就是通过修改QK矩阵乘法部分加入了专门针对偏移量k-l定义的新参数组来进行调整。 --- ### 总结 无论是哪种策略,最终目标都是为了让transformer网络学会合理运用来自不同时间步的数据点间的关系去完成目标任务。实际应用当中可以根据具体情况选择适合自己的解决方案。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值