引言
Manus是由中国团队Monica.im于2025年3月5日发布的全球首款通用型AI Agent(智能体)产品,在权威的GAIA基准测试中性能超越OpenAI同类产品。产品定位Manus定位于"手脑并用"(拉丁语Mens et Manus),采用多代理架 构模拟人类工作流(Plan-Do-Check-Act),成本仅为同类产品的十分之一。 用户只需输入简单指令,即可获得接近实用状态的报告或文档。
本文重点介绍Manus AI的核心功能和技术原理!
目录
一、Manus AI的定位
Manus AI定位为通用AI智能体,其名称源自MIT校训“Mens et Manus”(心灵与双手)中的 “Manus”(双手),强调通过“动手实践”解决实际问题。在技术架构上,Manus采用云端虚拟环境,让AI在独立的“电脑”中操作,避免与用户本地电脑争夺控制权。Manus AI智能体,旨在将想法转化为行动,自主执行复杂任务。
功能和能力包括:
-
旅行规划:创建个性化旅行手册,如日本4月行程。
-
金融分析:分析特斯拉股票,设计可视化仪表板。
-
教育支持:为中学教师创建关于动量定理的视频演示。
-
保险比较:生成清晰比较表并推荐最佳决策。
-
B2B采购:跨网络深入研究,找到合适供应商。
近期Manus与阿里合作,正在开发Manus中文版。官网链接:https://manus.im/
二、核心功能与特点
- 认知控制中枢:智能体控制中枢融合神经符号系统(Neuro-symbolic AI),将LLM的语义理解与知识图谱的逻辑推理相结合, 在医疗诊断等专业领域的决策准确率可达89.7%,较纯LLM方案提升34个百分点。
- 多模态感知系统:感知系统已突破传统文本交互边界,视觉模块采用ViT-22B模型实现每秒60帧的实时场景解析,听觉模块集成 WaveNet变体实现98.2%的语音指令识别率13。更革命性的突破在于跨模态对齐技术,通过对比学习算法建立文本-图像-声音的联合嵌入空间,使得智能体在未知环境中的对象识别准确率提升。
- 任务规划与执行机制:智能体的规划系统采用分层强化学习框架(HRL),将复杂任务分解为可执行的子目标序列。通过蒙特卡洛树搜索(MCTS)与神经规划器结合,Manus在GAIA基准测试中达到91.4%的任务完成率,远超OpenAI同类产品23个百分点。其执行系统创新性地采用沙盒虚拟机架构,支持Python脚本自动生成与调试,在数据分析类任 务中实现完全自动化处理。
2.1、自主操作能力
Manus AI能够模拟人类使用电脑的方式,执行各种操作任务, 就像一位虚拟助手在云端计算机上代替您工作。具体表现:
- 网页浏览操作:能够打开Chrome浏览器,在地址栏输入URL,点击导航栏,使用前进后退按钮;
- 内容交互:滚动页面,点击链接,填写表单,上传文件,拖放元素;
- 应用程序控制:使用快捷键控制视频播放(如使用空 格键暂停/播放YouTube视频);
- 多标签管理:同时打开多个标签页并在其间切换,保 持多线程工作流;
例: 当用户要求Manus比较不同平台上小米AI眼镜的价格时,它会像真人一样依次打开各电商平台,在搜索框输入“小米AI眼镜”,滚动浏览搜索结果,点击相关产品链接,记录价格信息,并在遇到验证码时提示用户协助。整个过程就像远程观看一位助手在电脑上操作一样直观。
2.2、任务规划与执行
Manus AI擅长将复杂任务系统化分解并有序执行,确保高效完成用户需求。具体表现:
- 任务分析与拆解:自动将大型任务拆分成逻辑子任务
- 步骤优先级安排:确定最佳执行顺序,提高效率
- 适应性调整:根据执行过程中的发现动态调整计划
- 进度跟踪与报告:实时更新任务完成状态
例: 当用户请求Manus进行特斯拉股票分析时,它会自动拆解任务为:
(1)收集特斯拉基本财务数据;
(2) 分析行业竞争格局;
(3)评估市场趋势;
(4)研究政 策影响;
(5)查找分析师观点;
(6)总结投资建议。
它会有序执行这些步骤,在Google Finance查询基本数据,访问特斯拉官网获取财报,浏览行业新闻分析竞争对手,最后将所有信息整合形成完整分析。
2.3、多源信息整合
Manus AI能够从各种渠道收集信息,并将其整合为连贯有用 的内容。具体表现:
- 跨平台搜索:同时访问搜索引擎、垂直网站、学术资源、社交媒体等
- 内容筛选:根据相关性和可靠性评估信息价值
- 信息解析:从复杂网页中提取关键数据和洞见
- 冲突处理:识别和解决不同来源之间的信息矛盾
例: 当用户要求分析恐怖电影的叙事技巧时,Manus会访问多个信息源:在B站搜索相关视频教程,浏览知乎上的专业讨论,查看搜狐娱乐的影评文章,甚至访问IMDb等国际电影数据库。它能够从各种来源提取关键见解,比如从专业影评中获取叙事结构分析,从观众评论中了解恐怖元素效果,从学术文章中提取类型电影理论,最终整合出全面而深入的分析报告。
2.4、可视化结果呈现
Manus AI注重以用户友好的方式呈现结果,而非简单的文字堆砌。具体表现:
- 交互式网页生成:创建带有动态元素的完整网页
- 数据可视化:将数字信息转化为图表、热图等视觉元素
- 多媒体整合:结合文本、图表和简单应用于一体
- 响应式设计:生成适合不同设备查看的内容
例: 在金融分析任务中,Manus不会仅提供一堆数字和文字,而是会创建一个完整的分析仪表板:包含特斯拉股价走势折线图,与竞争对手的市场份额对比饼图,季度收入增长柱状图,以关键财务指标的卡片式展示。用户可以浏览各个部分,查看详细解释,获得直观清晰的分析结果,就像使用专业金融分析工具一样。
2.5、过程透明与可干预
Manus AI将AI决策和执行过程完全透明化,让用户随时了解和控制。具体表现:
- 实时操作展示:用户可以观看AI操作的完整过程
- 决策解释:解释为什么选择特定行动路径
- 中途干预:用户可随时暂停、调整或重定向任务
- 协作功能:在困难点(如验证码)请求用户协助
例: 在研究某行业市场时,用户可以看到Manus在搜索过程中使用的具体关键词(如“2025年电动汽车市场预测”)。如果用户发现这些关键词不够精确, 可以立即发消息:“换用'中国电动车市场渗透率预 测'”,Manus会立即调整搜索策略。当Manus访问需要登录的网站时,会请求用户接管控制权完成验证,然后继续任务。这种透明和协作模式让用户始终掌 握主导权。
2.6、记忆与学习能力
Manus AI能够从交互中学习,记住用户偏好,并在后续任务中应用这些经验。具体表现:
- 用户偏好记录:记住用户对信息源和呈现方式的偏好
- 错误规避:避免重复之前已被纠正的错误
- 效率优化:根据历史任务改进执行路径
- 个性化适应:逐渐调整工作方式以匹配用户习惯
例: 如果用户曾指出“在财务分析中优先考虑现金流而非收入增长”,Manus会在后续所有财务分析任务中突出现金流指标。当用户纠正过Manus使用某网站的方式(如“不要使用某财经网站的观点,它们缺乏可靠性”),它会在未来任务中避免或谨慎使 用该来源。如果用户偏好以特定格式呈现结果(如 “我喜欢带有总结卡片的分析报告”),Manus会 在后续任务中自动采用这种格式,无需重复说明。
2.7、与现有AI工具的对比
一句话小结:你完全可以把Manus当作一个初级小助理来看待,使用正常的对话方式和她沟通,她呢也能帮着完成一些较复杂的任务,但是最终的结果到底是不是你想要的,还得需要你再审核审核。比如,你让给你炒一盘京酱肉丝,她也能给炒出来,但是至于酱是放多了还是放少了,还需要你来决定和品味!
三、技术原理剖析
在实例化的这台虚拟机沙箱里面,有几个基础动作,就可以覆盖绝大部分要做的事情:
- 命令执行:可以执行mkdir、ps、dig、apt等各种linux命令,也可以运行python解释器、开启web服务;
- 文件读写:包含很多种格式,如txt、md、py、csv、tsv、pdf、ppt、xlsx、docs等;
- 搜索:根据用户输入,去网上搜索各种数据源;
- 浏览器:阅读搜索出来的各个网页url内容,爬取关键信息,也可以读取本地文件,如pdf、ppt、excel;还包含很多子动作,比如浏览、翻页、刷新、点击、输入、移动等等操作;
3.1、模拟人类操作的技术实现
- 界面元素识别:能够识别网页和应用程序中的按钮、输入框、链接等交互元素。通过计算机视觉和自然语言处理技术,ManusAI能准确定位界面上的可操作元素,例如识别“提交”按钮或搜索栏。这种能力使其能够像人类一样理解界面布局,适应不同网站的设计差异。
- 操作序列规划:将任务分解为点击、输入、滚动等基本操作序列。例如,为完成旅行规划任务,Manus可能首先点击搜索航班的按钮,然后输入日期和目的地,再滚动页面查看选项。这种规划基于任务分解算法,确保操作逻辑清晰,符合人类操作习惯。
- 自适应操作:根据界面变化动态调整操作策略,应对不同网站的交互差异。例如,当网站更新布局或弹出广告时,Manus能实时调整点击位置或忽略干扰元素。这种自适应性依赖于实时反馈机制和机器学习模型的持续优化。
- 快捷键操作:能识别并使用应用程序的快捷键,提高操作效率。例如,在文本编辑器中,Manus可能使用“Ctrl+C”和“Ctrl+V”复制粘贴内容,减少手动操作时间。这种功能通过分析应用程序的文档和用户行为模式实现。
3.2、多源信息整合机制
- 信息源多元化:同时从搜索引擎(如Google、Bing)、专业网站(如金融新闻平台)、社交媒体(如X、微信)、视频平台(如YouTube、Bilibili)等获取信息。例如,在分析特斯拉股票时,Manus可能从财经 网站获取财务报告,从X获取市场情绪,从视频平台获取分析师评论。
- 内容提取与结构化:自动从网页中提取关键信息,并转化为结构化数据。例如,从新闻文章中提取公司收益数据,转化为表格格式。这种过程依赖于自然语言处理(NLP)和信息抽取技术,如命名实体识别 (NER)和关系抽取。
- 信息可信度评估:通过交叉验证比对不同来源的信息,提高信息可靠性。例如,若一个来源称特斯拉收益增长20%,而另一个来源称25%,Manus会分析来源的可信度(如权威性、更新时间)并给出加权平均值。 这种评估基于机器学习模型训练的数据集,结合来源评分系统。
- 知识图谱构建:将收集的信息整合为知识图谱,便于后续分析利用。例如,在旅行规划中,知识图谱可能包括目的地天气、航班信息、酒店价格等节点,方便查询和推理。这种技术基于图计算和语义网络,增强了信息关联性。
3.3、记忆与学习能力实现
- 用户偏好记录:记录用户对特定类型任务的处理偏好。例如,若用户偏好经济型酒店,Manus会在未来旅行规划中优先推荐此类选项。这种功能通过长期记忆模块实现,基于用户历史交互数据。
- 错误模式识别:识别导致任务失败的常见模式,并在后续避免。例如,若某次股票分析因数据源错误导致结果偏差,Manus会记录该错误模式,未来优先选择更可靠的数据源。这种能力依赖于异常检测算法和反馈学习。
- 任务执行优化:基于历史执行经验优化任务流程,提高成功率。例如,通过分析过去旅行规划的耗时,Manus可能调整信息收集顺序,先获取航班信息再查酒店。这种优化基于强化学习,结合奖励函数(如任务完成时间、用户满意度)。
3.4、可视化结果生成机制
- 模板匹配:根据任务类型选择合适的结果呈现模板。例如,股票分析可能使用折线图模板,保险比较使用表格模板。这种匹配基于任务分类模型,结合用户偏好。
- 数据可视化:将数据转化为图表、表格等直观形式。例如,将特斯拉股票数据转化为趋势图,突出收益增长点。这种功能依赖于数据可视化库(如Matplotlib、D3.js),结合AI生成设计。
- 交互式页面生成:创建包含多种交互元素的网页,提升用户体验。例如,旅行手册可能包括可点击的酒店链接、动态天气预报。这种生成基于前端开发框架(如React),结合AI驱动的交互设计。
四、小结
- 记录成功模式:保存那些产生出色结果的提示模式。
- 迭代提升:基于每次交互经验,逐步提炼你的提示词结构。
- 持续学习:关注Manus的新功能和能力更新,及时调整你的策略。
- 建立个人模板库:为经常执行的任务类型创建标准化提示模板。
欢迎 点赞👍 | 收藏⭐ | 评论✍ | 关注🤗