caffe中参数设置的解析

本文详细解析了Caffe中lenet_solver.prototxt文件的参数设置,包括测试批次数、测试间隔、学习率策略、优化算法、权重衰减、动量、最大迭代次数和显示频率等关键配置。此外,还提到了权值初始化和dropout层的相关参数。
摘要由CSDN通过智能技术生成

lenet_solver.prototxt:

net: "examples/mnist/lenet_train_test.prototxt"
test_iter: 100
test_interval: 500
base_lr: 0.01
momentum: 0.9
type: SGD
weight_decay: 0.0005
lr_policy: "inv"
gamma: 0.0001
power: 0.75
display: 100
max_iter: 20000
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"
solver_mode: CPU

net:网络模型(训练网络模型、测试网络模型)

test_iter:测试的批次数,这个参数要与batch_size结合起来理解,例如:mnist数据集中测试样本总数为10000,一次执行全部数据效率很低,因此,我们将测试数据分几个批次来执行。假定我们设置batch_size为100,则需要迭代100次才能将10000个数据全部执行完,因此,将test_iter设置为100。执行完一次全部数据,称之为一个epoch


test_iterval:测试间隔,每训练500次进行一次测试


base_lr: 0.01    
lr_policy: "inv"
gamma: 0.0001
power: 0.75

这四行是对学习率的设置,base_lr用来设置基础学习率,在迭代的过程中,可以对基础学习率进行调整,lr_policy用来设置调整策略。其中,lr_policy的设置以及相应的学习率的计算:(在开始训练

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值