PCL之积分图法线估计

积分图像是对有序点云的发现的估计的一种方法。该算法把点云作为一个深度图像,并创建一定的矩形区域来计算法线,考虑到相邻像素关系,而无需建立树形查询结构。因此,它是非常有效的。

代码展示:

#include<string>
#include<iostream>
#include<pcl/io/pcd_io.h>
#include<pcl/point_types.h>
#include<pcl/features/integral_image_normal.h>
#include<pcl/visualization/pcl_visualizer.h>

using namespace std;


int main()
{
    //加载点云
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
    pcl::io::loadPCDFile ("table_scene_mug_stereo_textured.pcd", *cloud);
    //估计法线
    pcl::PointCloud<pcl::Normal>::Ptr normals (new pcl::PointCloud<pcl::Normal>);
    pcl::IntegralImageNormalEstimation<pcl::PointXYZ, pcl::Normal> ne;
    // 法线估计方法: 
    // COVARIANCE_MATRIX:从具体某个点的局部邻域的协方差矩阵创建9个积分图,来计算这个点的法线。
    // AVERAGE_DEPTH_CHANGE:创建了6个积分图来计算水平和垂直方向的平滑后的三维梯度,并使用两个梯度间的向量积计算法线。
    // SIMPLE_3D_GRADIENT: 只创建了一个单一的积分图,并从平均深度变化计算法线。
    ne.setNormalEstimationMethod (ne.AVERAGE_3D_GRADIENT);
    // 设置最大深度变化系数
    ne.setMaxDepthChangeFactor(0.02f);
    // 设置优化法线方向时考虑邻域大小
    ne.setNormalSmoothingSize(10.0f);
    // 设置输入点云,必须为有序点云
    ne.setInputCloud(cloud);
    // 执行法线估计存储结果到normals
    ne.compute(*normals);
    //法线可视化
    pcl::visualization::PCLVisualizer viewer("viewer");
    viewer.setBackgroundColor (0.0, 0.0, 0.5);
    viewer.addPointCloudNormals<pcl::PointXYZ,pcl::Normal>(cloud, normals);
    pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> cloud_tr_color_h(cloud, 255, 255, 0);
    viewer.addPointCloud(cloud, cloud_tr_color_h, "raw_cloud");

    while (!viewer.wasStopped ())
    {
      viewer.spinOnce ();
    }
    return 0;
}

效果展示:

 

点云文件下载地址:table_scene_mug_stereo_textured.pcd

对于使用PCA方法估计点云的法线,可以使用PCL(Point Cloud Library)库来实现。下面是一个基本的步骤: 1. 加载点云数据:使用PCL的`pcl::PointCloud`数据结构加载点云数据。 2. 计算点云的协方差矩阵:使用`pcl::computeCovarianceMatrix`函数计算点云的协方差矩阵。 3. 计算协方差矩阵的特征向量和特征值:使用`pcl::eigen33`函数计算协方差矩阵的特征向量和特征值。 4. 提取法线:选择最小特征值对应的特征向量作为估计法线方向。 下面是一个简单的示例代码: ```cpp #include <pcl/point_types.h> #include <pcl/features/normal_3d.h> #include <pcl/io/pcd_io.h> int main() { pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); pcl::io::loadPCDFile<pcl::PointXYZ>("point_cloud.pcd", *cloud); pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne; ne.setInputCloud(cloud); pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>()); ne.setSearchMethod(tree); pcl::PointCloud<pcl::Normal>::Ptr cloud_normals(new pcl::PointCloud<pcl::Normal>); ne.setKSearch(10); // 设置最近邻搜索的数量 ne.compute(*cloud_normals); // 可以通过cloud_normals访问估计得到的法线信息 // cloud_normals->points[i].normal_x, cloud_normals->points[i].normal_y, cloud_normals->points[i].normal_z 分别表示第i个点的法线方向 return 0; } ``` 以上代码中,我们首先加载了一个点云数据文件(`point_cloud.pcd`),然后使用`NormalEstimation`类来进行法线估计。最后,我们可以通过访问`cloud_normals`来获取估计得到的法线信息。 请确保你已经正确安装了PCL库,并将代码中的文件路径和点云数据文件名替换为你自己的文件路径和文件名。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值