Magic Formulas(数学)

C. Magic Formulas
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

People in the Tomskaya region like magic formulas very much. You can see some of them below.

Imagine you are given a sequence of positive integer numbers p1, p2, ..., pn. Lets write down some magic formulas:

Here, "mod" means the operation of taking the residue after dividing.

The expression  means applying the bitwise xor (excluding "OR") operation to integers x and y. The given operation exists in all modern programming languages. For example, in languages C++ and Java it is represented by "^", in Pascal — by "xor".

People in the Tomskaya region like magic formulas very much, but they don't like to calculate them! Therefore you are given the sequence p, calculate the value of Q.

Input

The first line of the input contains the only integer n (1 ≤ n ≤ 106). The next line contains n integers: p1, p2, ..., pn (0 ≤ pi ≤ 2·109).

Output

The only line of output should contain a single integer — the value of Q.

Sample test(s)
input
3
1 2 3
output
3

 

     题意:

     给出 N(1 ~ 10 ^ 6)代表有 N 个数,后给出 p1 …… pn(0 ~ 2 x 10 ^ 9)。求给出两条式子的和。

 

     思路:

     数学。0 与 任意数 异或 都不变 ( 0 ^ x == x ) ,任意数 与 本身 异或 一次 为 0 ( x ^ x == 0 ),异或 两次 数本身.( x ^ x ^ x == x ) 。于是列表格观察规律:

12345678910
10111111111
20022222222
30103333333
40010444444
50121055555
60002106666
70113210777
80020321088
90101432109
100012043210

       可以发现,对角线上值为 0,上三角元素为行列号。以行看看不出什么,但是以列来看的话,可以发现每个模数都对应有周期。而这个周期为 (n / i),若这个周期为偶数,则变为 0,可以忽略,若为奇数,则异或的结果为 0 ^ 1 ^ …… ^ i - 1。除此之外,若 (n % i)不等于 0 ,说明还需要 异或 1 ^ …… ^ ( n % i ) ^ (0)(后异或 0 可有可无,因为异或 0 不改变其值,故后面的预处理多异或了 0 也不会有影响),所以要预处理好连续 0 异或 到 n 的对应的每个值。

       处理好后,根据 周期 和 余数 异或 便可得出答案了。

 

       AC:

#include <cstdio>
#include <cmath>
#include <algorithm>

using namespace std;

const int MAX = 1000001;

int num[MAX];

void solve () {
        num[0] = 0;
        for (int i = 1; i < MAX; ++i)
                num[i] = num[i - 1] ^ i;
}

int main() {
        int n, ans = 0;

        solve();

        scanf("%d", &n);

        for (int i = 1; i <= n; ++i) {
                int a;
                scanf("%d", &a);
                ans ^= a;
                if ((n / i) % 2) ans ^= num[i - 1];
                if (n % i) ans ^= num[n % i];
        }

        printf("%d\n", ans);

        return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值