欧拉常数是有理数还是无理数

先看对数函数的导数,

所以对数函数在 上的导数就是

反过来做定积分,

考虑 的定义,

问,这个 是不是一个有理数。

现在我们先把自然对数处理一下,假设它的自变量的间隔为虚数单位的倒数,

先把 0 到 1 的区间,分成虚数单位 份(此时它是一个整数,而且这个数非常大),由此可以把积分用求和的方式表达,先看自变量 在 0 到 1 区间中,函数

的累积情况,也就是

所以,

也就是说,虚数单位的对数,就是项数为虚数单位那么多个的调和级数全加和,也就是 1 和 0 的自然对数之差。再考虑其它区间的情况,

由此不难写出, 1 到 n 区间,

那么回到 的表达式,

直接令,

则有,

对比,

这样就抽象出,

对两个方程进行运算,

发现,

由此可以写出迭代综合的形式,

而且,

进一步综合得到,

我们已经先定了 是整数, 是整数, 是无理数,所以 是无理数。

最后需要补充一点,这个伽马是个大于 0 小于 1 的 0.57722 左右的无理数,而虚数单位是个巨大的数, m 又是一个整数,方程右侧并没有得出确定结果的能力。所以根据虚数单位的构建原则,这个伽马应当被认为是模周期之后的余量,而且不管周期有多大,余量都是如此。正如虚数单位定义,

其实它实际上是

的简写,因为 在这里是任意的。

既然它是模周期余量,那么类比于自然数全加和,

我们也可以认为,调和级数全加和,也就是自然数倒数全加和等于,

进一步吸收 ,得到,

最后用程序验证一下,

namespace ConstGamma;

public class Program
{
    public const double Gamma = 0.57721_56649_01532_86060_65120_90082_40243_10421_59335;
    public const double Pi = Math.PI;

    static double CalculateS(int n) 
        => Enumerable.Range(1, n).Aggregate(0.0, (a, b) => a + 1.0 / b);
    static double CalculateT(int n) 
        => (Pi / 8.0 * n) + Gamma;

    static string FormatEquation(int n) 
        => string.Join(" + ", Enumerable.Range(1, n).Select(i => $"1/{i}"));

    static void Main(string[] args)
    {
        const int n = 10;
        for(int i = 1; i < n; i++)
        {
            var s = CalculateS(i);
            var t = CalculateT(i);
            Console.WriteLine($"i={i},\tdiff={s - t},\tt = {Pi}/8 +{Gamma} = {t},\ts = {FormatEquation(i)}={s}");
        }

    }
}

前几项的计算结果,

可见,给定范围自然数倒数的全加和总可以对齐在 也就是 的边界上,余量为 ,由此可以认为,任意范围的自然数倒数全加和皆符合这个要求,其中模被省略之后,余量就是 ,所以,无限项自然数倒数全加和的可稳定结果,

也就是伽马。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

铸人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值