数列极限导出重要无理数

π \pi π e {\rm e} e与欧拉常数 γ {\gamma} γ的导出

1. π \pi π的导出

π \pi π被定义为圆的周长和直径比值,通过正多边形逼近的方法求 π \pi π是古人的常用方法,通过单调有界定理可以证明这种求 π \pi π的方法的确是可行的,因为半径为 1 1 1的正多边形周长数列确实收敛,收敛到的结果被定义为 2 π 2\pi 2π

要如何求半径为 1 1 1正多边形的周长呢?首先,注意到,将每个圆内接正多边形的顶点向圆心连线,可以得到 n n n个三角形,每一个三角形的圆心角是 36 0 ∘ / n 360^\circ/n 360/n(注意这里不能用 π \pi π,因为此时的 π \pi π是未定义的)。可以求出三角形对边的长度为
l n = 2 sin ⁡ 18 0 ∘ n , l_n=2\sin \frac{180^\circ}{n}, ln=2sinn180,
多边形周长的一半就是
C n = n sin ⁡ 18 0 ∘ n . C_n=n\sin \frac{180^\circ}{n}. Cn=nsinn180.
现在要证明这个数列是收敛的,先构造一个不等式。令 t = 18 0 ∘ n ( n + 1 ) t=\dfrac{180^\circ}{n(n+1)} t=n(n+1)180,则当 n ≥ 3 n\ge 3 n3时, n t ≤ 4 5 ∘ nt\le 45^\circ nt45,从而
tan ⁡ n t = tan ⁡ ( n − 1 ) t + tan ⁡ t 1 − tan ⁡ ( n − 1 ) t tan ⁡ n t ≥ tan ⁡ ( n − 1 ) t + tan ⁡ t ≥ ⋯ ≥ n tan ⁡ t . \tan nt=\frac{\tan(n-1)t+\tan t}{1-\tan (n-1)t\tan nt}\ge \tan(n-1)t+\tan t\ge \cdots\ge n\tan t. tannt=1tan(n1)ttannttan(n1)t+tanttan(n1)t+tantntant.
从而
sin ⁡ ( n + 1 ) t = sin ⁡ n t cos ⁡ n t + cos ⁡ n t sin ⁡ t = sin ⁡ n t cos ⁡ t ( 1 + tan ⁡ t tan ⁡ n t ) ≤ sin ⁡ n t cos ⁡ t ( 1 + 1 n ) ≤ n + 1 n sin ⁡ n t . \begin{aligned} \sin (n+1)t=&\sin nt\cos nt+\cos nt\sin t\\ =&\sin nt\cos t\left(1+\frac{\tan t}{\tan nt} \right)\\ \le &\sin nt\cos t(1+\frac 1n)\\ \le &\frac{n+1}{n}\sin nt. \end{aligned} sin(n+1)t==sinntcosnt+cosntsintsinntcost(1+tannttant)sinntcost(1+n1)nn+1sinnt.
所以 n ≥ 3 n\ge 3 n3时,
C n = n sin ⁡ 18 0 ∘ n = n sin ⁡ ( n + 1 ) t ≤ ( n + 1 ) sin ⁡ n t = ( n + 1 ) sin ⁡ 18 0 ∘ n + 1 = C n + 1 . C_n=n\sin \frac{180^\circ}{n}=n\sin (n+1)t\le(n+1)\sin nt=(n+1)\sin \frac{180^\circ}{n+1}=C_{n+1}. Cn=nsinn180=nsin(n+1)t(n+1)sinnt=(n+1)sinn+1180=Cn+1.
这就证明了数列 C n C_n Cn是单调递增的。

另一方面,单位圆内正 n n n边形的面积为
S n = n sin ⁡ 18 0 ∘ n cos ⁡ 18 0 ∘ n = C n cos ⁡ 18 0 ∘ n < 4 , S_n=n\sin \frac{180^\circ}{n}\cos \frac{180^\circ}{n}=C_n\cos \frac{180^\circ}{n}<4, Sn=nsinn180cosn180=Cncosn180<4,
所以 n ≥ 3 n\ge 3 n3时,有
C n = n sin ⁡ 18 0 ∘ n < 4 cos ⁡ 18 0 ∘ n ≤ 4 cos ⁡ 6 0 ∘ = 8 , C_n=n\sin \frac{180^\circ}{n}<\frac{4}{\cos \dfrac{180^\circ}{n}}\le \frac{4}{\cos 60^\circ}=8, Cn=nsinn180<cosn1804cos604=8,
这就证明了数列 C n C_n Cn是单调递增且有界的,于是 C n C_n Cn存在极限,这个极限就被定义为 π \pi π,也就是
π = d e f lim ⁡ n → ∞ n sin ⁡ 18 0 ∘ n . \pi\stackrel {\rm def}=\lim_{n\to \infty} n\sin \frac{180^\circ}{n}. π=defnlimnsinn180.
弧度制也是基于这个事实定义的,所以在前面描述角度时一律不使用 π \pi π,在弧度制的定义下,上式可以改写成
lim ⁡ n → ∞ sin ⁡ ( π / n ) π / n = 1. \lim_{n\to \infty}\frac{\sin (\pi/n)}{\pi/n}=1. nlimπ/nsin(π/n)=1.


自然底数 e {\rm e} e基于“复利”的定义,即探究数列 ( 1 + 1 n ) n \left(1+\dfrac{1}{n}\right)^n (1+n1)n是否存在极限,为此,记以下两个数列:
{ x n } : x n = ( 1 + 1 n ) n , { y n } : y n = ( 1 + 1 n ) n + 1 . \{x_n\}:x_n=\left(1+\frac 1n\right)^n,\\ \{y_n\}:y_n=\left(1+\frac{1}{n}\right)^{n+1}. {xn}:xn=(1+n1)n,{yn}:yn=(1+n1)n+1.
接下来证明这两个数列都存在极限,且收敛于同一个极限。单调性的证明利用平均值不等式,有
x n = ( 1 + 1 n ) n ⋅ 1 ≤ [ n ( 1 + 1 n ) + 1 n + 1 ] n + 1 = ( 1 + 1 n + 1 ) n + 1 = x n + 1 , x_n=\left(1+\frac 1n\right)^n\cdot 1\le \left[\frac{n(1+\frac 1n)+1}{n+1}\right]^{n+1}=\left(1+\frac{1}{n+1}\right)^{n+1}=x_{n+1}, xn=(1+n1)n1[n+1n(1+n1)+1]n+1=(1+n+11)n+1=xn+1,

1 y n = ( n n + 1 ) n + 1 ⋅ 1 ≤ [ ( n + 1 ) n n + 1 + 1 n + 2 ] n + 2 = ( n + 1 n + 2 ) n + 2 = 1 y n + 1 . \frac 1{y_n}=\left(\frac{n}{n+1} \right)^{n+1}\cdot 1\le \left[\frac{(n+1)\frac{n}{n+1}+1}{n+2}\right]^{n+2}=\left(\frac{n+1}{n+2}\right)^{n+2}=\frac 1{y_{n+1}}. yn1=(n+1n)n+11[n+2(n+1)n+1n+1]n+2=(n+2n+1)n+2=yn+11.
这里就得出了 x n x_n xn单调递增, y n y_n yn单调递减,而
x 1 = 2 < x n < y n < y 1 = 4 , x n < 4 , y n > 2. x_1=2<x_n< y_n<y_1=4,\quad x_n<4,y_n>2. x1=2<xn<yn<y1=4,xn<4,yn>2.
这里就得出了 x n x_n xn有上界 4 4 4 y n y_n yn有下界 2 2 2。接下来证明两个数列有相等的极限,因为
y n = x n ( 1 + 1 n ) , y_n=x_n\left(1+\frac 1n\right), yn=xn(1+n1),
两边同时取极限就得到 lim ⁡ n → ∞ y n = lim ⁡ n → ∞ x n \lim\limits_{n\to \infty}y_n=\lim\limits_{n\to \infty}x_n nlimyn=nlimxn。令这个公共极限为 e {\rm e} e,即
e = d e f lim ⁡ n → ∞ ( 1 + 1 n ) n . {\rm e}\stackrel {\rm def}= \lim_{n\to \infty}\left(1+\frac 1n\right)^n. e=defnlim(1+n1)n.


我们知道,调和级数列 a n = 1 + 1 2 + 1 3 + ⋯ + 1 n a_n=1+\frac 12+\frac13+\cdots+\frac 1n an=1+21+31++n1是发散的,这是因为
1 3 + 1 4 > 1 4 + 1 4 = 1 2 1 5 + ⋯ + 1 8 > 4 × 1 8 = 1 2 1 9 + ⋯ + 1 16 > 8 × 1 16 = 1 2 ⋯ \frac 13+\frac 14>\frac 14+\frac14=\frac 12\\ \frac 15+\cdots+\frac 18>4\times\frac 18=\frac12\\ \frac 19+\cdots+\frac 1{16}>8\times \frac 1{16}=\frac 12\\ \cdots 31+41>41+41=2151++81>4×81=2191++161>8×161=21
所以有
a 2 n > 1 + n 2 → ∞ , a_{2^n}>1+\frac n2\to \infty, a2n>1+2n,
{ a n } \{a_n\} {an}无界。但是可以证明
b n = a n − ln ⁡ n = 1 + 1 2 + 1 3 + ⋯ + 1 n − ln ⁡ n b_n=a_n-\ln n=1+\frac 12+\frac13+\cdots+\frac 1n-\ln n bn=anlnn=1+21+31++n1lnn
是存在极限的,这个极限被定义为 γ \gamma γ,称为欧拉常数。

由于我们前面证明了
( 1 + 1 n ) n < e < ( 1 + 1 n ) n + 1 , \left(1+\frac 1n\right)^n <e<\left(1+\frac{1}{n}\right)^{n+1}, (1+n1)n<e<(1+n1)n+1,
所以同时取对数有
n ln ⁡ ( 1 + 1 n ) < 1 < ( n + 1 ) ln ⁡ ( 1 + 1 n ) , n\ln \left(1+\frac 1n \right)<1<(n+1)\ln \left(1+\frac 1n\right), nln(1+n1)<1<(n+1)ln(1+n1),
于是有
1 n + 1 < ln ⁡ ( 1 + 1 n ) < 1 n . \frac{1}{n+1}<\ln \left(1+\frac 1n\right)<\frac 1n. n+11<ln(1+n1)<n1.
于是 b n + 1 − b n = 1 n + 1 − ln ⁡ n n + 1 < 0 b_{n+1}-b_n=\frac 1{n+1}-\ln {\frac n{n+1}}<0 bn+1bn=n+11lnn+1n<0,说明 { b n } \{b_n\} {bn}是单调递减的。又
b n = 1 + 1 2 + 1 3 + ⋯ + 1 n − ln ⁡ n . > ln ⁡ 2 + ln ⁡ 3 2 + ln ⁡ 4 3 + ⋯ + ln ⁡ n + 1 n − ln ⁡ n = ln ⁡ ( n + 1 ) − ln ⁡ n . > 0. \begin{aligned} b_n=&1+\frac 12+\frac 13+\cdots+\frac 1n-\ln n\\ .>&\ln 2+\ln \frac 32+\ln \frac 43+\cdots+\ln \frac {n+1}n-\ln n\\ =&\ln (n+1)-\ln n\\ .>&0. \end{aligned} bn=.>=.>1+21+31++n1lnnln2+ln23+ln34++lnnn+1lnnln(n+1)lnn0.
说明 { b n } \{b_n\} {bn}单调递减有下限,所以 { b n } \{b_n\} {bn}存在极限,这个极限就是欧拉常数 γ \gamma γ

作为欧拉常数的应用,可以体现在求以下两个极限上:

c n = 1 n + 1 + 1 n + 2 + ⋯ + 1 2 n c_n=\dfrac 1{n+1}+\dfrac {1}{n+2}+\cdots+\dfrac 1{2n} cn=n+11+n+21++2n1,求 lim ⁡ n → ∞ c n \lim\limits_{n\to \infty}c_n nlimcn

显然
b 2 n − b n = [ ( 1 + 1 2 + ⋯ + 1 n + 1 n + 1 + ⋯ + 1 2 n ) − ln ⁡ 2 n ] − [ ( 1 + 1 2 + ⋯ + 1 n ) − ln ⁡ n ] = c n − ln ⁡ 2 n + ln ⁡ n = c n − ln ⁡ 2 → 0 , \begin{aligned} &b_{2n}-b_n\\ =&[(1+\frac 12+\cdots+\frac 1n+\frac 1{n+1}+\cdots+\frac 1{2n})-\ln 2n]-[(1+\frac 12+\cdots+\frac 1n)-\ln n]\\ =&c_n-\ln 2n+\ln n\\ =&c_n-\ln 2\to 0, \end{aligned} ===b2nbn[(1+21++n1+n+11++2n1)ln2n][(1+21++n1)lnn]cnln2n+lnncnln20,
所以 c n → ln ⁡ 2 c_n\to \ln 2 cnln2

这里还可以用积分法求极限,即
c n = ∑ i = 1 n 1 n ⋅ n n + i = ∑ i = 1 n 1 n ⋅ 1 1 + i n = ∫ 0 1 1 1 + x d x = ln ⁡ 2. \begin{aligned} c_n=&\sum_{i=1}^n \frac 1n\cdot \frac {n}{n+i}\\ =&\sum_{i=1}^n \frac 1n\cdot\frac{1}{1+\frac in}\\ =&\int_0^1\frac 1{1+x}{\rm d}x\\ =&\ln 2. \end{aligned} cn====i=1nn1n+ini=1nn11+ni1011+x1dxln2.

c n = 1 − 1 2 + 1 3 − ⋯ + ( − 1 ) n + 1 1 n c_n=1-\dfrac 12+\dfrac 13-\cdots+(-1)^{n+1}\dfrac 1n cn=121+31+(1)n+1n1,求 lim ⁡ n → ∞ c n \lim\limits_{n\to \infty}c_n nlimcn

这里
b 2 n − b n = [ ( 1 + 1 2 + ⋯ + 1 n + 1 n + 1 + ⋯ + 1 2 n ) − ln ⁡ 2 n ] − [ ( 1 + 1 2 + ⋯ + 1 n ) − ln ⁡ n ] \begin{aligned} &b_{2n}-b_n\\ =&[(1+\frac 12+\cdots+\frac 1n+\frac 1{n+1}+\cdots+\frac 1{2n})-\ln 2n]-[(1+\frac 12+\cdots+\frac 1n)-\ln n]\\ \end{aligned} =b2nbn[(1+21++n1+n+11++2n1)ln2n][(1+21++n1)lnn]
更改匹配的次序,让 b 2 n b_{2n} b2n中的第 2 k 2k 2k减去 b n b_n bn中的第 k k k项,如 1 / 2 − 1 , 1 / 4 − 1 / 2 1/2-1,1/4-1/2 1/21,1/41/2,就得到
b 2 n − b n = c n − ln ⁡ 2 → 0 , b_{2n}-b_n=c_n-\ln 2\to 0, b2nbn=cnln20,
所以 c n → ln ⁡ 2 c_n\to \ln 2 cnln2

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值