引言:
(PS:想看正文的小伙伴可以跳过引言直接到自然对数底e的由来)
著名哲学家沃斯基索德说过,人类就是在不断的自我摧毁与自我重塑中建立起来。今天期末考试过后突然闲下来,翻书翻着翻着突然想起了一个问题:为什么,Why we need the imaginary number? ,为什么我们需要用到虚数 i i i?
然后我的数学物理大厦又双叒叕(yòu shuāng ruò zhuó)崩塌了

(rebuliding……基础不好的人是这样的)
不知道从何开始,这个 i i i就心安理得地混进你学的各类学科的各类公式,当然,你也不是不懂它啥含义——如果 i i i在自然对数e的幂指数中,那代表相位关系,那如果它在e外面和e保持平级关系,那它代表幅度。这种熟悉的关系就跟你不知不觉间就开始习惯闯进你生活的某个人一样。(这个比喻我直呼富含人文情调)
发现这个问题所在的我当场立马凭借我贫瘠的记忆力进行时光追溯了下,好家伙这玩意儿从高中就混入了我的生活,不过那会只是简单的计算,至于为什么,以及从而而来,I don’t care,没人会记住高考数学第一道选择题选什么,除非你高考后对答案时发现你这道题做错了……
没关系,那往后推。万物始于同济高数。打开目录直接扫,第十二章第八节傅里叶级数的复数形式,好家伙,默认你会复数以及欧拉公式是吧 e i x = c o s x + i s i n x e^{ix} = cos x + isinx eix=cosx+isinx,又是一波高中老师和大学老师的精彩默契配合呢。等等,三角函数?完蛋,怪不得爷的课本都是复数虚数,跟三角函数周期函数搭上关系直接这辈子绑定螺旋上天少不了。
也就是说从欧拉公式这里开始,从这座沟通了三角函数与虚数的桥梁开始,一段孽缘就此开始,所以我们要理解虚数的意义,就要理解欧拉公式是如何来的。
你:这不简单?
反手甩出一套泰勒展开欧拉公式

对不起呜呜呜我不知道你这么强我是废物QAQ
自然对数底e的由来:
e i x = c o s x + i s i n x e^{ix} = cos x + isinx eix=cosx+isinx
看到这条式子,开门见山第一个问题——自然对数底e是怎么来的?
圆周率 π \pi π 不行吗?计算机本源0和1不香吗?
我们先给出定义:自然对数底e的含义是单位时间内,持续的翻倍增长所能达到的极限值。
e是一个无限不循环小数,其值约等于2.718281828459…,其定义式为 e = lim n → + ∞ ( 1 + 1 n ) n e = \lim_{n\rightarrow+\infty}(1+\frac{1}{n})^n e=limn→+∞(1+n1)n
那么这个数又是怎么冒出来的呢?我们举个栗子:
假设你有 1元钱存在银行里,资本家良心发现,银行的年利率飙到了 100% ( e 1 中 的 1 即 为 利 率 e^1中的1即为利率 e1中的1即为利率)。如果这家银行一年付一次利息,你自然可以在一年后拿到 1元的本金和 1* 100% = 1元的利息,总共两元的余额。这个时候你觉得两元有点少,但是资本家摆明底线说年利率不能再升了,然后你突发奇想,那我存进去半年后拿出来,本金连同利息再存进去,利滚利滚利就不可以了吗?于是你暴打了他一顿,让他改成每半年领一次利息。
领两次(每半年领一次):1(本金)+ 1*50% = 1.5(第一次);(1+1/2)
1.5 (本金)1.5*50% = 2.25(第二次);(1+1/2)(1+1/2)
你震惊地发现,你本来只能得到2块钱,但是现在变成了2.25块钱。你发现了财富密码,于是你开始准备继续暴打资本家,但这回资本家注意到你的本金只有一块钱,他突然答应了你的要求。
你以为你要在一年内成为亿万富翁了。
领三次(每四个月领一次):1(本金)+ 1*33% = 1.33(第一次);(1+1/3)
1.33 (本金)1.33*33% = 1.769(第二次);(1+1/3)(1+1/3)
1.769 (本金)1.769*33% = 2.35(第三次);(1+1/3)(1+1/3)(1+1/3)
钱的确涨了,你在开心之余也发现不对了,这增速不对劲?你研究了下上述情况得到了这样一条规律
lim n → + ∞ ( 1 + 1 n ) n \lim_{n\rightarrow+\infty}(1+\frac{1}{n})^n limn→+∞(1+n1)n
你觉得有点眼熟,你看了下e的值。2.718281828459……
(你的眼前一片黑)

(复利率法(英文:compound interest),是一种计算利息的方法。按照这种方法,利息除了会根据本金计算外,新得到的利息同样可以生息,因此俗称“利滚利”、“驴打滚”或“利叠利”。只要计算利息的周期越密,财富增长越快,而随着年期越长,复利效应亦会越为明显。—— 维基百科)
(参考自 https://zhuanlan.zhihu.com/p/48391055)
虚数i的由来:
e i x = c o s x + i s i n x e^{ix} = cos x + isinx eix=cosx+isinx
知道e是啥子后,你开始了第二个问题:
为什么是 i i i?
不能是起到代表坐标意义x吗?
不能是j吗?(不过这个的确可以,物理学上用j取代 i i i是为了与电流符号I区分开来)
虚数的 i i i的得到并不困难,它的定义式为 i 2 = − 1 i^2 = \sqrt{-1} i2=−1
其来源于解一元二次方程 a x 2 + b x + c = 0 ( a ≠ 0 ) ax^2 + bx +c = 0(a\neq0) ax2+bx+c=0(a=0)时判别式 Δ = b 2 − 4 a c < 0 \Delta = \sqrt{b^2-4ac}<0 Δ=b2−4ac<0的情况
也是一元二次方程的解即 − b ± b 2 − 4 a c 2 a < 0 \frac{-b\pm\sqrt{b^2-4ac}}{2a}<0 2a−b±b2−4ac<0 时需要 i i i来表示
当然这里你可能会跟我一样吐槽,单个虚数比如2i,3i这玩意儿现实里根本就没啥具体表征,要来干嘛
(也有可能是在下学术不精,欢迎在评论区讨论下哈)
## 复数a+bi的意义:
紧接着我们要知道复数的意义(好了好了我知道你要嫌我烦了但我还是要说)
先给出定义,我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部, i i i为虚数单位。
这个时候很多人都会联想到复数平面,即将a,b当做平面上点的坐标,两个坐标轴分别称为实轴和虚轴。
a+bi即点(a,b)
放在极坐标下,我们就可以得到下面两条几何数学公式
z的模 ρ = a 2 + b 2 \rho= \sqrt{a^2+b^2} ρ=a2+b2
z的幅角 ψ = arctan b a \psi = \arctan{\frac{b}{a}} ψ=arctanab
那么 a , b , ψ , ρ a,b,\psi,\rho a,b,ψ,ρ之间的关系我们也就清楚明白了
a = ρ cos ψ a=\rho\cos{\psi} a=ρcosψ(实轴上的分量)
b = ρ sin ψ b=\rho\sin{\psi} b=ρsinψ(虚轴 i i i上的分量)
综上,即 z = ρ cos ψ + i ρ sin ψ z = \rho\cos{\psi} + i\rho\sin{\psi} z=ρcosψ+iρsinψ
这里其实很好理解,又有点难理解(经典胡言乱语),这里不管是从极坐标还是从向量的角度都很好理解,这么表述一个复数平面的确没问题,但是要表述一个平面的点我们用多维函数坐标(a,b)或者向量 z = a x ⃗ + b y ⃗ z = a\vec{x}+b\vec{y} z=ax+by即可表征,何必大张旗鼓引入个虚数 i i i就只是为了表述一个复平面呢?
不管怎么说,欧拉公式 e i x = c o s x + i s i n x e^{ix} = cos x + isinx eix=cosx+isinx等号右边部分我们知道了其含义,表示复平面上的一个点嘛,x是幅角,模是1,因为模为1是确定的,也就是说这个点在这个单位圆的位置取决于幅角x。

欧拉公式的推导:
那接下来就是重点戏了,根据上面的理论
e = lim n → + ∞ ( 1 + 1 n ) n e = \lim_{n\rightarrow+\infty}(1+\frac{1}{n})^n e=limn→+∞(1+n1)n
e 1 e^1 e1我们知道它在复平面对应的点在实轴上的( e 1 e^1 e1,0)
也就是(1,0)在n取无穷的情况下在实轴(水平方向)增长,然后趋近于( e 1 e^1 e1,0)
那这个时候我们把 e 1 e^1 e1换成 e i e^i ei(欸嘿是 e i e^i ei不是 e i ei ei哦,这你不会算了吧)
而 e i = lim n → + ∞ ( 1 + i ∗ 1 n ) n e^i = \lim_{n\rightarrow+\infty}(1+\frac{i*1}{n})^n ei=limn→+∞(1+ni∗1)n
我们类比下上面 e 1 e^1 e1那句话的意义,得到 e i e^i ei的物理意义也就是(1,0)在n取无穷的情况下在虚轴(垂直方向)上增长
这里可能有点难理解,我们可以通过n在不同取值下的情况来推理画图一下:
当n=3时,
(
1
+
i
3
)
3
(1+\frac{i}{3})^3
(1+3i)3
当n=10时,
(
1
+
i
10
)
10
(1+\frac{i}{10})^{10}
(1+10i)10
当n=50时,
(
1
+
i
50
)
50
(1+\frac{i}{50})^{50}
(1+50i)50
(这里我们可以发现,每一次 ( 1 + i n ) (1+\frac{i}{n}) (1+ni)的相乘都是一次小幅度旋转,随着n越取越大,我们发现模的长度变小开始趋向于1(点离单位圆的圆周越来越近),幅角x也开始趋于一个确定的角度 57.29577951308232 ° 57.29577951308232° 57.29577951308232°,其本质上是虚轴方向增长越来越小,模的长度 a 2 + b 2 \sqrt{a^2+b^2} a2+b2也近似于不变了)
也就是说 e i = e i ∗ 1 e^i = e^{i*1} ei=ei∗1,即点(1,0)在单位圆的圆周上逆时针完成1弧度,即 57.295 ° 57.295° 57.295°的圆周运动所在的位置
同理可得, e i π e^{i\pi} eiπ,即点(1,0)在单位圆的圆周上逆时针完成 π \pi π弧度的圆周运动,也就是运动半圈所在的位置,从(1,0)运动到(-1,0),故 e i π = − 1 e^{i\pi} = -1 eiπ=−1
对应角度如果转 1 ° 1° 1°那就是 e i π / 180 e^{i\pi/180} eiπ/180
e i x e^{ix} eix,即点(1,0)在单位圆的圆周上逆时针完成 x x x弧度的圆周运动所在的位置
那诸如 2 i , 3 i 2^i,3^i 2i,3i等,通过化简可以得到 2 i = e l n 2 i = e i l n 2 2^i = e^{ln2^i} = e^{iln2} 2i=eln2i=eiln2,即点(1,0)在单位圆的圆周上逆时针完成 l n 2 ln2 ln2弧度的圆周运动所在的位置
虚数的引入原因:
但是我们的问题并没有完全解决,在复数的意义中我们提出,引入虚数i仅仅只是为了表征一个平面而已吗?欧拉公式是否只适应复平面?那么我们现在假设欧拉公式在一个x-y平面上也成立,我们称之为小羊公式好了(反正都是错的)
那么公式也就变成了 e y θ = x cos θ + y sin θ e^{y\theta} = x\cos{\theta}+y\sin{\theta} eyθ=xcosθ+ysinθ,x,y分别为x-y平面上的分量, θ \theta θ为幅角
最简单的验证方法就是代值嘛,
θ
\theta
θ取
π
/
2
\pi/2
π/2,上式变为
e
y
π
2
=
y
e^{\frac{y\pi}{2}} = y
e2yπ=y,这个有没有解呢?
先取对数
y
π
2
=
ln
y
\frac{y\pi}{2} = \ln{y}
2yπ=lny,再求导看看相交嘛,
π
/
2
=
1
y
\pi/2 = \frac{1}{y}
π/2=y1,
y
=
2
π
y = \frac{2}{\pi}
y=π2,好嘛这不得代进去康康是不是在
y
=
2
π
y = \frac{2}{\pi}
y=π2处是不是相交了……
!完蛋,小羊公式大失败,推翻数学大厦任务大失败
欸那为什么爷的小羊公式8行呢?
再瞅瞅推理过程,比如 ( 1 + i 2 ) 2 (1+\frac{i}{2})^2 (1+2i)2如果没有运用到复平面的特点也就是虚轴分量 i 2 = − 1 i^2 = \sqrt{-1} i2=−1来化简 i i i的高次幂,也就得不到 e i e^i ei,所以虚数的引入不单单只是为了表述一个平面,更重要的是起到表征三角函数幅度幅角用指数e来简化计算的目的。
(大概吧,随便扯的也不知道对不对)
结尾:
最后就用个最美公式结尾叭。
e i π + 1 = 0 e^{i\pi} + 1 = 0 eiπ+1=0
参考资料:1.https://zhuanlan.zhihu.com/p/48392958
2.https://www.bilibili.com/video/BV1ns411J7Qs?from=search&seid=8513874704185614397
3.https://www.zhihu.com/question/41134540
4.https://zhuanlan.zhihu.com/p/48391055
5.《数学物理方法》 ——梁昆淼